

Biegemaschine 24V

Inbetriebnahme (Hardware)

Inhaltsverzeichnis

3 Inbetriebnahme (Hardware)	1
3.1 Einführung	1
3.2 Inbetriebnahmeprotokoll	3
3.3 Übung: Sichtprüfung durchführen	5
3.4 Programmiergerät und SPS verbinden	6
3.5 Projektdaten laden	9
3.5.1 TIA	9
3.6 Systemdiagnose	
3.6.1 Diagnosefunktionen und -ereignisse	14
3.6.2 Diagnose in der Gerätesicht	14
3.7 Übung: Inbetriebnahme der Hardwareprojektierung	17
3.8 E/A-Check	
3.8.1 PLC-Variablentabelle	
3.8.2 Beobachtungstabelle	
3.8.3 Übung: E/A-Check durchführen	

3 Inbetriebnahme (Hardware)

3.1 Einführung

Um die Hardwarekonfiguration in die Steuerung übertragen zu können, muss diese eingeschaltet sein, was zunächst eine Schrittweise Inbetriebnahme der Anlage voraussetzt.

Die Inbetriebnahme ist die erstmalige bestimmungsgemäße Verwendung einer Maschine oder Anlage. Sie darf erst erfolgen, wenn die Maschine den Anforderungen der relevanten EG-Richtlinien entspricht und durch die EU-Konformitätserklärung und CE-Kennzeichnung nachgewiesen wurde. Die Inbetriebnahme ist ein wichtiger Schritt bei der Errichtung von Industrieanlagen und stellt sicher, dass die Anlage ordnungsgemäß funktioniert und sicher betrieben werden kann. Dieser Prozess erfordert eine sorgfältige Planung und Ausführung.

Nachfolgend wird auf allgemeine Schritte der Hardwareinbetriebnahme eingegangen. Je nach Aufbau der realen Anlage ist dieses Vorgehen gegeben falls zu adaptieren.

Bevor die eigentliche Inbetriebnahme beginnt, müssen verschiedene vorbereitende Arbeiten durchgeführt werden, um sicherzustellen, dass alle Voraussetzungen für einen erfolgreichen Start erfüllt sind.

- Dokumentenprüfung
 - o Überprüfung der Schaltpläne, Verdrahtungspläne, Stücklisten, und Funktionsbeschreibungen.
 - Sicherstellen, dass alle notwendigen Genehmigungen und Sicherheitsdokumente vorliegen.
- Visuelle Inspektion
 - Physische Überprüfung der Anlage auf Schäden, lose Verbindungen und korrekte Installation.
 - Überprüfung der mechanischen Installation und aller elektrischen Verbindungen.
- Überprüfung der Sicherheitseinrichtungen
 - Sicherstellen, dass alle Schutzvorrichtungen installiert und funktionsfähig sind.
 - o Testen von Not-Aus-Schaltern und anderen sicherheitsrelevanten Geräten.
- Durchgängigkeit und Isolationswiderstand prüfen
 - o Messung der Niederohmigkeit aller Schutzleiterverbindungen.
 - o Isolationsmessungen durchführen, um sicherzustellen, dass keine ungewollten Erdverbindungen oder Kurzschlüsse vorliegen.

Nachdem die Sichtprüfung, sowie elektrische Prüfung erfolgreich abgeschlossen wurde, kann das schrittweise Einschalten der Anlage beginnen. Hierbei sollten die Stromkreise kontrolliert nacheinander in Betrieb genommen werden und auch die entsprechenden Spannungen und Drehfelder geprüft werden, beginnend mit der Stromversorgung der Steuerung und dann der Hauptstromversorgung.

Nachdem die SPS hochgefahren ist, kann die Hardwarekonfiguration übertragen werden.

Anschließend ist zu prüfen, ob die konfigurierten Baugruppen und Firmwareversionen auch denen der realen Hardwarekomponenten entsprechen.

Als Abschluss der Inbetriebnahme der Hardware ist ein E/A-Check durchzuführen, dabei wird überprüft, ob die Sensorik und Aktorik fehlerfrei verdrahtet ist und die Signale korrekt im Prozessabbild der Ein- und Ausgänge liegen.

3.2 Inbetriebnahmeprotokoll

Um eine strukturierte Inbetriebnahme durchführen zu können ist es zwingend erforderlich, vorher ein Inbetriebnahmeprotokoll zu erstellen, welches abgearbeitet werden kann und in dem die Ergebnisse entsprechend dokumentiert werden.

Für die vorliegende Anlage wurde ein vereinfachtes Protokoll erstellt. Dieses beinhaltet neben der Hardwareinbetriebnahme auch bereits den Teil für die Software, welcher zu einem späteren Zeitpunkt benötigt wird.

Beschreibung	OK	Nicht OK
Sichtprüfung		
Gerätehandbücher der verwendeten (SPS-)Komponenten vorhanden		
Die elektrischen Betriebsmittel stimmen mit der technischen		
Dokumentation überein		
Betriebsmittel sind ohne sichtbare, die Sicherheit beeinträchtigende		
Beschädigungen.		
Auswahl und Einstellung von Schutz- und Überwachungsgeräten		
Kennzeichnung aller Betriebsmittel		
Fachgerechte Leiterverbindung		
Verdrahtung zwischen Modell und SPS abgeschlossen		
SPS-Hardware		
Spannung SPS eingeschaltet		
Spannung Modell eingeschaltet		
Gerätekonfiguration (im TIA-Portal) erstellt		
Projektdaten in PLC geladen		
Verdrahtung der Sensorik geprüft (E/A-Check)		
Verdrahtung der Aktorik geprüft (E/A-Check)		
SPS-Software		
Software übersetzt		
Software in SPS geladen		
Betätigung von S5 initialisiert die Schrittkette		
Anlage fährt in Grundstellung		
 Presse in oberer Endlage (S1 betätigt) 		
- Transportstrecke in vorderer Endlage (S4 betätigt)		
Werkstück eingelegt (B3 unterbrochen)		
Betätigung von S5 startet den Automatikablauf		
Schlitten fährt bis zum Magazin (Q3 angesteuert)		
Schlitten stoppt Bewegung unterhalb des Magazins (S3 betätigt)		
Schlitten fährt mit Werkstück Richtung Presse (Q4)		
Bewegung wird gestoppt, wenn Lichtschranke B1 unterbrochen wird		
Presse fährt nach unten (Q2)		
Bewegung wird in unterer Endlage (S2 betätigt) gestoppt		
Presse fährt nach oben (Q1)		
Bewegung wird in oberer Endlage (S1 betätigt) gestoppt		
Schlitten fährt mit Werkstück Richtung Abnahme (Q4)		
Schlitten stoppt Bewegung in Position Abnahme (S4 betätigt)		
Kette springt in Initialschritt, wenn Werkstück entnommen wurde (B2 nicht unterbrochen)		
Erneute Betätigung von S5 startet einen neuen Automatikablauf, wenn ein Werkstück im Magazin liegt (B3 unterbrochen)		
Anlagenerweiterung 1 - Zeitfunktion		

Automatikablauf wird mit Betätigung von S5 gestartet, wenn ein	
Werkstück im Magazin liegt	
Schlitten fährt bis zum Magazin (Q3 angesteuert)	
Schlitten stoppt Bewegung unterhalb des Magazins (S3 betätigt)	
Schlitten fährt mit Werkstück Richtung Presse (Q4)	
Bewegung wird gestoppt, wenn Lichtschranke B1 unterbrochen wird	
Presse fährt nach unten (Q2)	
Bewegung wird in unterer Endlage (S2 betätigt) gestoppt	
Presse verweilt für definierte Zeitdauer (2 Sekunden) in der unteren Endlage	
Presse fährt nach oben (Q1)	
Bewegung wird in oberer Endlage (S1 betätigt) gestoppt	
Schlitten fährt mit Werkstück Richtung Abnahme (Q4)	
Schlitten stoppt Bewegung in Position Abnahme (S4 betätigt)	
Kette springt in Initialschritt, wenn Werkstück entnommen wurde (B2	
nicht unterbrochen)	
Erneute Betätigung von S5 startet einen neuen Automatikablauf, wenn	
ein Werkstück im Magazin liegt (B3 unterbrochen)	
Anlagenerweiterung 2 – Zählfunktion	
Automatikablauf wird mit Betätigung von S5 gestartet, wenn ein	
Werkstück im Magazin liegt	
Schlitten fährt bis zum Magazin (Q3 angesteuert)	
Schlitten stoppt Bewegung unterhalb des Magazins (S3 betätigt)	
Schlitten fährt mit Werkstück Richtung Presse (O4)	
Bewegung wird gestoppt, wenn Lichtschranke B1 unterbrochen wird	
Presse fährt nach unten (O2) - [Start erster Biegevorgang]	
Bewegung wird in unterer Endlage (S2 betätigt) gestoppt	
Presse verweilt für definierte Zeitdauer (2 Sekunden) in der unteren	
Endlage	
Presse fährt nach oben (Q1)	
Bewegung wird in oberer Endlage (S1 betätigt) gestoppt	
Presse fährt nach unten (Q2) - [Start zweiter Biegevorgang]	
Bewegung wird in unterer Endlage (S2 betätigt) gestoppt	
Presse verweilt für definierte Zeitdauer (2 Sekunden) in der unteren	
Endlage	
Presse fährt nach oben (Q1)	
Bewegung wird in oberer Endlage (S1 betätigt) gestoppt	
Presse fährt nach unten (Q2) - [Start dritter Biegevorgang]	
Bewegung wird in unterer Endlage (S2 betätigt) gestoppt	
Presse verweilt für definierte Zeitdauer (2 Sekunden) in der unteren	
Endlage	
Presse fährt nach oben (Q1)	
Bewegung wird in oberer Endlage (S1 betätigt) gestoppt	
Schlitten fährt mit Werkstück Richtung Abnahme (Q4)	
Schlitten stoppt Bewegung in Position Abnahme (S4 betätigt)	
Kette springt in Initialschritt, wenn Werkstück entnommen wurde (B2	
nicht unterbrochen)	
Erneute Betätigung von S5 startet einen neuen Automatikablauf, wenn	
ein Werkstück im Magazin liegt (B3 unterbrochen)	

3.3 Übung: Sichtprüfung durchführen

Ziel:

Ich kann meine Anlage für die Inbetriebnahme vorbereiten und die Sichtprüfung durchführen.

Aufgabe:

Bereiten Sie die Anlage für die Inbetriebnahme vor.

i

Falls die Verdrahtung des Modells mit dem verwendeten Automatisierungssystems noch nicht erfolgt ist, führen Sie diese durch. "Tabelle 1 Belegungsplan Klemmleiste X1", aus dem Kapitel "Modellbeschreibung", sowie die Gerätehandbücher der verwendeten Hardware können hierfür hilfreich sein.

Führen Sie eine Sichtprüfung durch und dokumentieren Sie das Ergebnis in einem Protokoll.

3.4 Programmiergerät und SPS verbinden

Um die Verbindung zur PLC (Zielsystem) herstellen zu können, müssen das Programmiergerät (PG) und das Zielsystem über eine Schnittstelle verbunden werden. Über diese zu definierende Kommunikationsverbindung tauschen PG und PLC-Daten und Informationen aus.

Bild 1 Physikalische Vernetzung

Gängige Programmierschnittstellen sind z.B.: PROFIBUS oder PROFINET bzw. Ethernet.

Damit eine Kommunikation aufgebaut werden kann, müssen folgende Voraussetzungen erfüllt sein:

- beide Geräte haben einen Ethernet-Anschluss.
- beide Geräte sind physisch mit dem gleichen Netzwerk verbunden.
- beide Geräte sind korrekt parametriert (IP-Adresse eingestellt).

Die IP-Adresse des Programmiergerätes kann in der Windows Systemsteuerung unter "Systemsteuerung → Netzwerk und Internet → Netzwerkverbindungen" angepasst werden.

Bild 2 Windows Netzwerkadapter einstellen

Hier ist der entsprechende Netzwerkadapter auszuwählen, im Kontextmenü unter "Eigenschaften → Internetprotokoll Version 4 (TCP/IPv4)" kann manuell eine freie IP-Adresse und Subnetzmaske vergeben werden, welche im Adressraum der SPS liegt.

Erreichbare Teilnehmer

Nachdem die physikalische Vernetzung, sowie die Parametrierung der Onlineschnittstelle des Programmiergerätes abgeschlossen ist, muss geprüft werden, ob eine Verbindung zum Zielsystem aufgebaut werden kann. Hierfür stehen abhängig von der verwendeten Programmierumgebung und Zielsystem verschiedene Bordmittel zur Verfügung.

Beispielsweise besteht bei Beckhoff im TwinCAT die Möglichkeit unter "SYSTEM → Zielsystem wählen → Suche (Ethernet)" mittels Broadcast Search nach erreichbaren Zielsystemen zu suchen.

Im Folgenden wird detailliert das Vorgehen im TIA-Portal, in Kombination mit einer S7 1200 CPU, gezeigt.

Unter "Online → Erreichbare Teilnehm	er" kann die Verbind	ung zur CPU überprüft
werden.		

Bild 3 Erreichbare Teilnehmer im TIA Portal

Die Funktion "Erreichbare Teilnehmer" bietet eine einfache Möglichkeit festzustellen, welche Teilnehmer über die eingestellte PG/PC-Schnittstelle erreichbar sind. Diese werden in der Tabelle "Erreichbare Teilnehmer der ausgewählten Schnittstelle" angezeigt, nachdem die Schaltfläche "Suche starten" betätigt wurde.

Wird ein gefundenes Gerät markiert, kann durch Setzen des Hakens "LED blinken" ein Blinklicht am selektieren Gerät aktiviert werden. Damit kann zweifelsfrei überprüft werden, ob das selektierte Gerät auch dem erwarteten entspricht.

3.5 Projektdaten laden

Nach erfolgreicher Übersetzung Ihrer Projektierung müssen die Projektdaten, die Sie offline erzeugt haben, in das angeschlossene Gerät geladen werden. Beim erstmaligen Laden werden die Projektdaten vollständig geladen. Bei weiteren Ladevorgängen werden nur noch Änderungen geladen.

3.5.1 TIA

Im Folgenden wird das Vorgehen im TIA-Portal beschrieben. Um die Projektdaten in das Gerät zu laden, gehen Sie wie folgt vor:

- Selektieren Sie in der Projektnavigation das gewünschte Gerät
- Wählen Sie im Kontextmenü der rechten Maustaste "Laden in Gerät"
- Wählen Sie aus, was Sie laden möchten:
 - o Hardware und Software (nur Änderungen)
 - o Hardwarekonfiguration
 - o Software (nur Änderungen)
 - Software (komplett laden); alle Werte werden auf ihre Startwerte zurückgesetzt

Projekt Bearbeiten Ansicht Eir	nfügen Online Extras Werkzeuge	Fenster	Hilfe				
📑 🎦 🔚 Projekt speichern ا 昌	X 🗉 🖹 🗙 炳 t C* t 🖥 🛄 !	lî 🖳 🖫	💋 Onlin	e verbinden 🖉 Online-Verbin	dung trennen	🔐 🖪	
Projektnavigation	🔲 🖣 Hardware 🕨 -KF1 [CPL	J 1214C A	C/DC/Rly]				
Geräte							
		•					
Neues Gerat hinzufugen							
Gerate & Netze				15 N	Sr.		
• L -KF1 [CPU 1214C AC/C	Gerät tauschen			*	*		
Geratekonfiguratio	Öffnen						
😵 Online & Diagnose	In neuem Editor öffnen		101		2	2	
Programmbaustei	Baustein/PLC-Datentyn öffnen	F7	2 101	1	2	2	4
Technologieobjekt	bustenni ze butentyp omen			SIGMENS SHERE SHE			
Externe Quellen	Ausschneiden	Strg+X					
PLC-Variablen	Kopieren	Strg+C					
Lee PLC-Datentypen	Einfügen	Strg+V		a creat	1		
🕨 💭 Beobachtungs- un	Löschen	Entf		• 2000.Riy			
Online-Sicherunge	Umbenennen	F2					
🕨 🛄 Geräte-Proxy-Dater	Gehe zur Topologiesicht						
🔤 Programminforma 🚆	Gehe zur Netzsicht			-			
PLC-Meldetextliste							
🕨 🕞 🛅 Lokale Module	Ubersetzen		C				
🕨 🕨 🔛 Nicht gruppierte Gerä	Laden in Gerat	,	Hardwa	re und Software (nur Anderung	jen)		
🕨 🕨 📷 Security-Einstellunger	Sicherung von Online-Gerat laden	Charles V	Hardwa	reconfiguration			
🕨 🕨 🕅 Geräteübergreifende	Online Verbindung transen	Strou M	Softwar	e (nur Anderungen) e (komplett laden)			
🕨 🔰 Gemeinsame Daten 🍟		Stro+D	Soltwar	e (komplett laden)			
🕨 🕨 🛅 Dokumentationseinst	Meldungen emofengen	Sug+D					
Image: Sprachen & Ressource	j mendangen emplangen						

Bild 4 Laden in Gerät

Stimmen die Verbindungsinformationen der Projektierung nicht mit einem erreichbaren Gerät überein, erscheint das Dialogfeld "Erweitertes Laden".

	Gerät	Gerätetyp	Steckpl	Schnittste	ellen Adresse	Subnetz
	PLC_1	CPU 1214C AC/D	1 X1	PN/IE	172.16.0.1	
		Typ der PG/PC-Schnitt: PG/PC-Schnitt:	stelle: stelle:	<mark>↓_</mark> PN/IE Realtek F	Cle GbE Family Controll	er 💌 💎
	Verbin	dung mit Schnittstelle/Sul 1. Gat	bnetz: [eway: [Direkt an S	teckplatz '1 X1'	· · · · · · · · · · · · · · · · · · ·
	Zielgerät auswähl	len:			Alle kompatiblen	Teilnehmer anzeigen
	Gerät	Gerätetyp	Schnitte	stellentyp	Adresse	Zielgerät
····	Teilnehmer	\$7-1200	ISO		00-1C-06-06-42-68	-
p <u> </u>	-		PN/IE		Zugriffsadresse	
LED blinken						
						Suche start
line-Statusinformatio	n:				Nur Fehlermeld	lungen anzeigen
Suche beendet. 1 k	ompatible Teilnehme	er von 1 erreichbaren Teilr	ehmern g	efunden.		
Scan und Informatione	onsabfrage abgeschl n werden eingeholt	lossen.				

Bild 5 Erweitertes Laden

Konfigurierter Zugriff

Im Bereich konfigurierte Zugriffsknoten werden die in der Projektierung festgelegten Parameter angezeigt.

Ausgewählte Schnittstelle

Hier lässt sich die Schnittstelle auswählen, über die die PLC mit dem Programmiergerät (PG) verbunden ist.

Gefundene Geräte

Die über die eingestellte Schnittstelle erreichbaren Geräte werden nach Betätigung der Schaltfläche "Suche starten", in einer Tabelle angezeigt.

Schaltfläche "Laden"

Über diese Schalflächen wird die ausgewählte Lade-Aktion ausgeführt.

Das TIA Portal sucht im Ziel-Subnetz nach der projektierten PLC. Wenn Sie dem PG noch nicht über die Windows Systemsteuerung eine IP-Adresse im selben Subnetz zugewiesen haben, können Sie dies nun über den im folgenden Bild dargestellten Dialog tun.

Erweiterte	s Laden in Gerät (0132:000011)	×
<u>.</u>	IP-Adresse zuweisen Zum Ausführen der Funktion benötigt das PG/PC eine weitere IP-Adresse im gleichen Subnetz wie das Gerät. Soll die IP-Adresse hinzugefügt werden?	1
	💽 Ja Nein	

Bild 6 Erweitertes Laden – IP-Adresse zuweisen

Mit Klick auf "Ja" wird dem PG temporär eine passende IP-Adresse aus dem Subnetz des Gerätes zugewiesen.

Nun erscheint der Dialog "Vorschau laden".

tatus	1	Ziel	Meldung	Aktion	-
+ []	%	▼ PLC_1	Bereit für den Ladevorgang.	'PLC_1' laden	
	A	 Schutz 	Schutz vor unbefugtem Zugriff		
	Å		Geräte, die an ein Firmennetzwerk oder an das Internet angeschlossen werden, müssen gegen unbefugten Zugriff angemessen geschützt sein, z.B. durch die Verwendung von Firewalls und Netzwerksegmentierung. Weiterführende Informationen über Industrial Security finden Sie unter http://www.siemens.com/industrialsecurity		
	0	 Gerätekonfiguration 	Systemdaten im Ziel löschen und ersetzen	Laden in Gerät	
	0	Software	Software in Gerät laden	Konsistent laden	
	0	Zusatzinformation	Es gibt Unterschiede zwischen den Einstellungen für das Projekt u	Alle überschreiben	
			III		>

Bild 7 Vorschau Laden

Hier werden die Aktionen aufgeführt, die beim Laden ausgeführt werden. Gegebenenfalls werden hier auch Warnungen und Fehler aufgedeckt. Nach Betätigen der Schaltfläche "Laden" wird der Ladevorgang ausgeführt.

Nach erfolgtem Vorgang wird das Ergebnis in einem entsprechenden Dialogfenster angezeigt.

atus	1	Ziel	Meldung	Aktion
1Î	0	▼ -KF1	Laden in Gerät fehlerfrei beendet.	'-KF1' laden
	0	 Baugruppen starter 	Baugruppen nach dem Ladevorgang starten.	Baugruppe starten
	0		Die Baugruppe "-KF1" kann gestartet werden.	

Bild 8 Ergebnisse des Ladevorgangs

Im Dialogfeld "Ergebnisse des Ladevorgangs" können Sie die eventuell gestoppten Baugruppen wieder starten. Abschließend betätigen Sie die Schaltfläche "Fertig stellen".

Der Ladevorgang ist nun beendet.

3.6 Systemdiagnose

Die Diagnose von Geräten und Modulen wird im SIMATIC-Umfeld als Systemdiagnose bezeichnet. Die Komponenten melden automatisch eine Störung des Betriebs und liefern zusätzliche Diagnoseinformationen.

Bild 9 Systemdiagnose

Das Automatisierungssystem überwacht in der laufenden Anlage folgende Zustände:

- Geräteausfall/-wiederkehr
- Ziehen/Stecken-Ereignis
- Baugruppenfehler
- Peripheriezugriffsfehler
- Kanalfehler
- Parametrierfehler
- Ausfall der externen Hilfsspannung

Die Systemdiagnose ist als Standard in der Firmware der PLC S7-1200 integriert. Störungen werden sofort erkannt und dem HMI-Gerät, dem Webserver, den LED-Anzeigen am betroffenen Modul und dem TIA-Portal gemeldet.

3.6.1 Diagnosefunktionen und -ereignisse

Die Systemdiagnose ist die Erkennung, Auswertung und Meldung von Fehlern, die innerhalb eines Automatisierungssystems auftreten.

Erfassung von Diagnosedaten

Die Erfassung von Diagnosedaten durch die Systemdiagnose muss nicht programmiert werden, sie ist standardmäßig vorhanden und läuft automatisch ab. Die PLC erkennt Systemfehler, Hardwarefehler sowie Fehler im Anwenderprogramm, zu denen jeweils Diagnoseereignisse in die Systemzustandsliste und den Diagnosepuffer, in der Reihenfolge ihres Auftretens eingetragen werden.

Beim Urlöschen und bei Spannungslosigkeit der PLC bleibt der Inhalt des Diagnosepuffers erhalten. Fehler im System können durch den Diagnosepuffer auch nach längerer Zeit noch ausgewertet werden, um das Auftreten einzelner Diagnoseereignisse zurückzuverfolgen und zuordnen zu können.

3.6.2 Diagnose in der Gerätesicht

In der Gerätesicht erhalten Sie zu den einzelnen Baugruppen die Statusanzeige über Diagnose-Icons. Diese finden Sie an verschiedenen Stellen im TIA Portal.

Bild 10 Diagnose Icon Gerätesicht

Störungskategorisierung

Um Störungen schnell und einfach kategorisieren zu können, werden nachfolgende Symbole verwendet.

Symbol	Bedeutung
	Betriebszustand "RUN"
	Betriebszustand "STOP"
ľ	Betriebszustand "Anlauf"
\checkmark	Keine Störung
2	Wartungsbedarf
	Wartungsanforderung
2	Fehler

Tabelle 1 Symbole Systemdiagnose

Ein Doppelklick auf das Diagnosesymbol startet die Online- und Diagnosesicht (sofern vorhanden). Hier wird Ihnen unter "Diagnose → Diagnosestatus" der Status der Baugruppe mitgeteilt. Arbeitet die Baugruppe nicht störungsfrei, wird der Fehler, welche Diagnostiziert wurde hier aufgeführt. Meist werden auch Abhilfemaßnahmen mit angegeben.

kale Module → -KF2	- • • •
agnose Allaemein	Diagnosestatus
Diagnosestatus Kanaldiagnose	Status
unktionen	Baugruppe vorhanden. Eingangs-/Ausgangsdaten nicht verfügbar. Zusatzinformationen für das Modul: Es wurden Unterschiede zwischen der geladenen Projektierung und dem Offline-Projekt festgestellt. Online-Artikelnummer: 6ES7 521-1BH00-0AB0 Offline-Artikelnummer: 6ES7 521-1BL10-0AA0 Die Version der installierten Firmware (Online) ist nicht identisch mit der Version der konfigurierten Firmware (Offline). Firmware-Version: V2.1 Konfigurierte Firmware-Version: V1.1
	Standarddiagnose
	Meldung
	Hardware-Komponente wegen eines falschen Typs nicht verfügbar
	Hilfe zur markierten Diagnose-Zeile Eine Hardware-Komponente wurde gesteckt, deren Typ nicht dem projektierten Baugruppentyp entspricht.
	Behebung: Überprüfen Sie die gesteckte Hardware-Komponente oder korrigieren Sie die Konfiguration, falls erforderlich.

Bild 11 Diagnosestatus Komponente

3.7 Übung: Inbetriebnahme der Hardwareprojektierung

Ziel:

Ich kann selbstständig die PLC-Hardware in Betrieb nehmen.

Aufgabe:

Verbinden Sie die PLC mit dem Programmiergerät und übertragen Sie die PLC-Hardware, indem Sie die Projektierungsdaten in das Gerät laden.

Inbetriebnahme (Hardware) - Übung: Inbetriebnahme der Hardwareprojektierung

Vorgehensweise:

1. Überprüfen Sie, mittels "Erreichbare Teilnehmer", ob eine Verbindung zum Zielsystem aufgebaut werden kann:

2. Selektieren Sie in der Projektnavigation Ihre PLC und wählen im Kontextmenü der rechten Maustaste:

"Laden in Gerät" \rightarrow "Hardware und Software (nur Änderungen)".

Inbetriebnahme (Hardware) - Übung: Inbetriebnahme der Hardwareprojektierung

3. Folgen Sie dem Fenster "Vorschau Laden":

4. Nach dem erfolgreichen Ladevorgang starten Sie die PLC.

atus	1	Ziel	Meldung	Aktion
4	0	▼ -KF1	Laden in Gerät fehlerfrei beendet.	'-KF1' laden
	0	 Baugruppen starten 	Baugruppen nach dem Ladevorgang starten.	1 Baugruppe starten
	0		Die Baugruppe "-KF1" kann gestartet werden.	
<			III	

5. Wenn sich die PLC nun in der Betriebsart RUN befindet und störungsfrei ist, ist die Übung beendet.

		Hardwareprojektieru												
Geräte							2	opologi	esicht	d N	etzsicht	۲U (Gerätesi	icht
11		-KF1 [CPU 1214C]		•		: 🖌 🖽 🛛] @, ±						E	
▼ 🔄 Hardwareprojektierung		2												_
🎬 Neues Gerät hinzufügen						(F)								
💑 Geräte & Netze						*								
• Ci -KF1 [CPU 1214C AC/DC/Rly]	V		•											
Gerätekonfiguration			102	102	101		4	2					7	
😼 Online & Diagnose		100 000	105	102	101		- E	2	3		2	0		
🕨 🚘 Programmbausteine		Baugruppenträge						≤		2				
Technologieobjekte						SIEMENS		1						
🕨 ன Externe Quellen														
PLC-Variablen														
PLC-Datentypen						10		1014						
Beobachtungs- und Forcetabellen														
🕨 📴 Online-Sicherungen														
🕨 🎆 Geräte-Proxy-Daten	- 1 1													
📴 Programminformationen														
PLC-Meldetextlisten														

3.8 E/A-Check

Ein E/A-Check (Eingangs-/Ausgangs-Check) ist ein wesentlicher Schritt bei der Inbetriebnahme. Er dient dazu, sicherzustellen, dass alle Eingänge und Ausgänge korrekt mit der SPS verdrahtet sind und ordnungsgemäß funktionieren. Diese Prüfung ist entscheidend, um mögliche Fehlerquellen frühzeitig zu identifizieren und sicherzustellen, dass die Anlage wie geplant arbeitet.

Der E/A-Check ist deshalb so wichtig, weil eine fehlerhafte Zuordnung oder ein defekter Sensor/Aktor in einem SPS-System schwerwiegende Folgen haben kann, wie z.B. Anlagenstillstände, unerwartete Bewegungen von Maschinen oder sogar Unfälle. Durch den E/A-Check wird gewährleistet, dass jede Eingangsvariable (z.B. Taster, Sensor) korrekt auf die SPS reagiert und jede Ausgangsvariable (z.B. Motor, Ventil) das gewünschte Verhalten zeigt.

Aufgrund von möglicherweise fehlerhafter Verdrahtung kann es während des E/A-Checks zu ungewollten Anlagenreaktionen kommen. Durch vorsichtiges und überlegtes Vorgehen ist sicherzustellen, dass eventuell noch vorhandene Verdrahtungs- oder Hardwarefehler zu keiner Zeit zu einer Gefahr für Mensch, Umwelt oder Anlagenteilen führen können.

Ein E/A-Check wird idealerweise durchgeführt, wenn noch kein Steuerungsprogramm abgearbeitet wird. So werden die von Hand angesteuerten Ausgänge nicht überschrieben und von Hand betätigte Sensoren haben keine Programmreaktion zur Folge.

Als Werkzeug stehen abhängig vom Zielsystem folgende Hilfsmittel zur Verfügung:

- Beobachtungstabelle (Siemens) / Überwachungsliste (Beckhoff)
- PLC-Variablentabelle (Siemens) / Globale Variablenliste (Beckhoff)

3.8.1 PLC-Variablentabelle

Mit Hilfe der PLC-Variablentabelle können Sie die Peripherieeingänge in Betrieb nehmen.

PLC	-Var	iablen 🕨 Stand	lard-Variablent	tabelle [60]				_ # # ×
						🛛 Variablen	Anwenderkonstanten	🖉 Systemkonstanten
∌	*	🖻 🗄 🖫 🔐						
	Stand	ard-Variablent	abelle					
		Name	Datentyp	Adresse	Beobachtungswert	Kommentar		
1	-00	S1	Bool	%E1.0	FALSE	Endlagenschalte	er Presse Oben (1 - nicht in Position)
2	-	\$2	Bool	%E1.1	TRUE	Endlagenschalte	er Presse Unten (1 - nicht in Position	n)
3	-	\$3	Bool	%E1.2	TRUE	Endlagenschalte	er Werkstückträger Position Magazir	n (1 - nicht in Position)
4	-	<u>\$4</u>	Bool	%E1.3	FALSE	Endlagenschalte	er Werkstückträger Position Abnahn	ne (1 - nicht in Position)
5	-	\$5	Bool	%E1.4	FALSE	Taster Start / Res	et	
6	-	B1	Bool	%E1.5	TRUE	Lichtschranke Po	osition Presse (1 - nicht betätigt)	
7	-	B2	Bool	%E1.6	TRUE	Lichtschranke Po	osition Abnahme (1 - nicht betätigt))
8	-	B3	Bool	%E1.7	FALSE	Lichtschranke Po	osition Magazin (1- nicht betätigt)	
9	-	Q1	Bool	%A8.0	FALSE	Fahre Presse na	ch oben	
10	-	Q2	Bool	%A8.1	FALSE	Fahre Presse na	ch unten	
11	-	Q3	Bool	%A8.2	FALSE	Fahre Werkstück	träger Richtung Magazin	
12	-	Q4	Bool	%A8.3	FALSE	Fahre Werkstück	träger Richtung Abnahme	

Bild 12 PLC-Variablentabelle

Eingänge prüfen

In der Variablentabelle können Eingänge beobachtet werden, damit eignet sich die Funktion zur Prüfung der Eingabebaugruppen sowie der Geberstromkreise. So lassen sich Zustände von Eingängen prüfen, die aus dem Prozessabbild (PAE) eingelesen werden.

Betätigen Sie zum Beobachten das Icon "Alle beobachten". Darauf erscheint die Spalte Beobachtungswerte, in der Sie die Werte beobachten können.

Ausgänge prüfen

Ausgänge lassen sich in der PLC-Variablentabelle nicht ansteuern oder verändern. Diese können hier lediglich beobachtet werden. Zum Verändern des Status eines Ausgangs muss die Beobachtungstabelle verwendet werden.

3.8.2 Beobachtungstabelle

In Beobachtungstabellen haben Sie die Möglichkeit, gezielt, Variablen aus unterschiedlichen PLC-Variablentabellen, an einer Stelle zu beobachten und zusätzlich auch zu steuern.

Zum Beobachten von Variablen muss eine Online-Verbindung zur PLC bestehen. Eine einmal erstellte Beobachtungstabelle können Sie speichern, duplizieren, ausdrucken und immer wieder zum Beobachten und Steuern von Variablen verwenden.

Sie finden die Beobachtungstabellen im Ordner "Beobachtungs- und Forcetabellen" in der Projektnavigation Ihrer PLC. Es können mehrere Beobachtungstabellen angelegt werden. Die Namen können frei gewählt werden.

Projektnavigation	
Geräte	
 B	
	V O ^
📑 Neues Gerät hinzufügen	
Geräte & Netze	
▼ 🚰 -KF1 [CPU 1214C AC/DC/Rly]	V •
Gerätekonfiguration	
🗓 Online & Diagnose	
🕨 🚘 Programmbausteine	•
🕨 🙀 Technologieobjekte	
Externe Quellen	=
🔻 🔁 PLC-Variablen	
🍇 Alle Variablen anzeigen	
📑 Neue Variablentabelle hinzufügen	
🍯 Standard-Variablentabelle [26]	
PLC-Datentypen	
Beobachtungs- und Forcetabellen	
🏙 Neue Beobachtungstabelle hinzufügen	
Forcetabelle	
IO_Check	
🕨 🙀 Online-Sicherungen	
Geräte-Proxy-Daten	
Programminformationen	
PLC-Meldetextlisten	
🕨 🛅 Lokale Module	

Bild 13 Beobachtungstabelle - Projektnavigation

In folgendem Bild ist eine geöffnete Beobachtungstabelle dargestellt. Es sind bereits einige Variablen eingetragen.

HV	V_\$712	00 🕨 -KF1 [CPU	1214C AC/DC/Rly	/] 🕨 Beobachtun	igs- und Forcetabe	llen ► IO_Che	eck		_ # = X
Ś	، 🖄 ا	ž 19 10 91 9	5 🛷 🙄 💁						
	i	Name	Adresse	Anzeigeformat	Beobachtungswert	Steuerwert	9	Kommentar	Variablen-Kommentar
1	// Input	s							
2		"S1"	%E1.0	BOOL	TRUE				Endlagenschalter Presse Oben (1 - nicht in Position)
3		"S2"	%E1.1	BOOL	TRUE				Endlagenschalter Presse Unten (1 - nicht in Position)
4		"\$3"	%E1.2	BOOL	TRUE				Endlagenschalter Werkstückträger Position Magazin (1 - nicht in Position)
5		"S4"	%E1.3	BOOL	FALSE				Endlagenschalter Werkstückträger Position Abnahme (1 - nicht in Position
6		"S5"	%E1.4	BOOL	FALSE				Taster Start / Reset
7		"B1"	%E1.5	BOOL	FALSE				Lichtschranke Position Presse (1 - nicht betätigt)
8		"B2"	%E1.6	BOOL	FALSE				Lichtschranke Position Abnahme (1 - nicht betätigt)
9		"B3"	%E1.7	BOOL	FALSE				Lichtschranke Position Magazin (1-nicht betätigt)
10	// Outp	uts							
11		"Q1"	%A8.0	BOOL	TRUE	TRUE	🛛 🗹 🛕		Fahre Presse nach oben
12		"Q2"	%A8.1	BOOL	FALSE				Fahre Presse nach unten
13		"Q3"	%A8.2	BOOL	TRUE	TRUE	🛛 🗹 🛕		Fahre Werkstückträger Richtung Magazin
14		"Q4"	%A8.3	BOOL	FALSE				Fahre Werkstückträger Richtung Abnahme
15			Hinzufügens						

Bild 14 Ansicht Beobachtungstabelle

Der Aufbau ist der PLC-Variablentabelle sehr ähnlich. Allerdings können die Namen der Variablen nicht verändert werden.

Beobachtungstabelle hinzufügen

Um eine Beobachtungstabelle zu erstellen, gehen Sie folgendermaßen vor:

- 1. Öffnen Sie in der Projektnavigation die Struktur unterhalb der PLC, für die Sie eine Beobachtungstabelle erstellen wollen.
- 2. Öffnen Sie den Ordner "Beobachtungs- und Forcetabellen".
- 3. Doppelklicken Sie auf den Befehl "Neue Beobachtungstabelle hinzufügen".
- 4. Eine neue Beobachtungstabelle wird hinzugefügt.

Unterschiedliche Test-Fälle

Sie können mehrere Beobachtungstabellen über "Neue Beobachtungstabelle hinzufügen" erstellen und entsprechend einem bestimmten Testfall benennen. Diese Beobachtungstabellen sind immer Bestandteile des Projektes.

Eingänge prüfen

In der Beobachtungstabelle können Eingänge beobachtet werden. Damit eignet sich die Funktion zur Prüfung der Eingabebaugruppen sowie der Geberstromkreise. So lassen sich Zustände von Eingängen prüfen, die aus dem Prozessabbild eingelesen werden.

Ausgänge steuern

Gleichzeitig können mit der Testfunktion "Steuern" einzelne Ausgänge geschaltet werden. Die Funktion der angeschlossenen Stellglieder kann so überprüft werden.

Für das Beobachten oder Steuern benötigen Sie die folgenden Bedienelemente:

Symbol	Bedeutung
	Ein- und Ausblenden der Steuerspalten
	Ein- und Ausschalten der Beobachtungsfunktion
1	Einmaliges steuern der selektierte PLC-Variablen "Steuerblitz"

Tabelle 2 Symbole Beobachtungstabelle

Vorgehensweise Beobachten

- 1. Tragen Sie den Namen der Variablen ein in der Spalte "Name".
- 2. Starten Sie die Beobachtungsfunktion (Brille mit grünem Dreieck).

Bild 15 Variable steuern

Vorgehensweise Steuern

- 1. Tragen Sie den Namen der Variablen ein in der Spalte "Name".
- 2. Starten Sie die Beobachtungsfunktion (Brille mit grünem Dreieck).
- 3. Aktivieren Sie die Steuerspalten.
- 4. Geben Sie in der Spalte "Steuerwert" den gewünschten Wert ein.
- 5. Bei einem binären Signal wird dies 0 bzw. "FALSE" oder 1 bzw. "TRUE" sein.
- 6. Betätigen Sie den "Steuerblitz".

fischertechnik 🗪

3.8.3 Übung: E/A-Check durchführen

Ziel:

Ich kann angeschlossene Peripheriebaugruppen überprüfen.

Aufgabe:

Prüfen Sie die richtige Verdrahtung der Ein- und Ausgänge Ihrer PLC mit Hilfe einer Beobachtungstabelle.

- Beim Ansteuern der Motoren muss darauf geachtet werden, dass diese nicht in ihre Endlage fahren, da sie sonst blockieren. Wenn die Motoren auf Block fahren, kann das zu einer Überlastung führen.
- Eine, in der Beobachtungstabelle selektierte Variable, kann über den Shortcut "Strg + F2" sofort auf "TRUE" und mit "Strg + F3" auf "FALSE" gesteuert werden. Dies kann ein hilfreiches Werkzeug sein, um die Endlage nicht zu überfahren.

Vorgehensweise:

1. Fügen Sie über die Schaltfläche "Neue Beobachtungstabelle hinzufügen" eine neue Beobachtungstabelle hinzu und vergeben einen aussagekräftigen Namen (z.B. "IO-Check"):

LC-Datentypen	
 Beobachtungs- und Forcetabellen 	
🌁 Neue Beobachtungstabelle hinzufü	gen 1
Forcetabelle	
IO-Check	2
Online-Sicherungen	

2. Tragen Sie die Variablen aus Ihrer PLC-Variablentabelle ein:

# # # b 9.8.2 % m										
	Name	Adresse	Anzeigeformat	Beobachtungswert	Steuerwert	9	Kommentar	Variablen-Kommentar		
	S1	%E0.0	BOOL					Endlagenschalter Presse Oben (1 - nicht in Position)		
	52	%E0.1	BOOL					Endlagenschalter Presse Unten (1 - nicht in Position)		
	\$3	%E0.2	BOOL					Endlagenschalter Werkstückträger Position Magazin (1 - nicht in Position)		
1	*\$4*	%E0.3	BOOL					Endlagenschalter Werkstückträger Position Abnahme (1 - nicht in Position)		
	\$5	%E0.4	BOOL					Taster Start / Reset (1 - Taster betätigt)		
	B1	%E0.5	BOOL					Lichtschranke Position Presse (1 - nicht betätigt)		
	82	%E0.6	BOOL					Lichtschranke Position Abnahme (1 - nicht betätigt)		
	83	%E0.7	BOOL					Lichtschranke Position Magazin (1-nicht betätigt)		
	Q1	%A8.0	BOOL					Fahre Presse nach oben		
2	*Q2*	%A8.1	BOOL							
2	"Q3"	%A8.2	BOOL							
	Q4	%A8.3	BOOL							

3. Starten Sie die Beobachtung mit der "Brille" D. Betätigen Sie manuell alle Sensoren und prüfen Sie diese auf korrekte Verdrahtung und Funktion:

00

Ha	rdwar	eprojektierur	ng 🕨 -KF1 [CPU 121	4C AC/DC/Rly] 🕨 I	Beobachtungs- und	Forcetabeller	n 🕨 IO-Check					
-11												
1	?	IIIII 19 10	91 % % ···	Appriseformat	Pachachtungquart	Stouenwort	3					
4		Name Ical	Auresse	Anzeigeronnat	Beobachtungswert	Stederwert						
1		-51-	%E0.0	BOOL								
2		*S2*	%E0.1	BOOL	TRUE							
3		*S3*	%E0.2	BOOL	FALSE							
4		*S4*	%E0.3	BOOL	FALSE							
5		"S5"	%E0.4	BOOL	TRUE							
6		"B1"	%E0.5	BOOL	FALSE	2						
7		*B2*	%E0.6	BOOL	FALSE							
8		"B3"	%E0.7	BOOL	FALSE							
9		"Q1"	%A8.0	BOOL	FALSE							
10		"Q2"	%A8.1	BOOL	FALSE							
11		"Q3"	%A8.2	BOOL	FALSE							
12		"Q4"	%A8.3	BOOL	FALSE							

4. Tragen Sie bei der ersten Ausgangsvariablen in der Spalte "Steuerwert" "TRUE" oder "1" ein. Achten Sie darauf, dass bei der Variablen auch in der Spalte "Blitz" ein Häkchen gesetzt ist:

Hard	wareprojektierun	g 🕨 -KF1 [CPU 12	214C AC/DC/Riy] 🔸 I	Beobachtungs- und	Forcetabelle	n 🕨 IO-Check
		a. a. a				
		1 % 🗱 🎬 1	1			
i	Name	Adresse	Anzeigeformat	Beobachtungswert	Steuerwert	9
1	"S1"	%E0.0	BOOL	TRUE		
2	"S2"	%E0.1	BOOL	TRUE		
3	"S3"	%E0.2	BOOL	FALSE		
4	*S4*	%E0.3	BOOL	FALSE		
5	"S5"	%E0.4	BOOL	TRUE		
6	"B1"	%E0.5	BOOL	FALSE		
7	"B2"	%E0.6	BOOL	FALSE		
8	"B3"	%E0.7	BOOL	FALSE		
9	"Q1"	%A8.0	BOOL	FALSE	TRUE	M 🔺
10	"Q2"	%A8.1	BOOL	FALSE		
11	"Q3"	%A8.2	BOOL	FALSE	1	2
12	"Q4"	%A8.3	BOOL	FALSE		

- 5. Betätigen Sie die Schaltfläche mit dem Blitz und der "1"
- Wenn die richtige Komponente angesteuert wird, tragen Sie für den Ausgang in der Spalte "Steuerwert" "FALSE" oder "O" ein und betätigen Sie nochmals den Blitz

Hardwa	reprojektierung)	-KF1 [CPU 12	14C AC/DC/Rly] 🕨 E	Beobachtungs- und	Forcetabelle	n ▶ IO-Checl
# #	1	R R 📬 📬				
i	Name	Adresse	Anzeigeformat	Beobachtungswert	Steuerwert	- 4
1	"S1"	%E0.0	BOOL	TRUE		
2	"S2"	%E0.1	BOOL	TRUE		
3	"\$3"	%E0.2	BOOL	FALSE		
4	"54"	%E0.3	BOOL	FALSE		
5	"S5"	%E0.4	BOOL	TRUE		
6	"B1"	%E0.5	BOOL	FALSE		
7	"B2"	%E0.6	BOOL	FALSE		
8	"B3"	%E0.7	BOOL	FALSE		
9	"Q1"	8A8.0	BOOL	TRUE	FALSE	
10	"Q2"	%A8.1	BOOL	FALSE	_	
11	"Q3"	%A8.2	BOOL	FALSE	1	2
12	"Q4"	%A8.3	BOOL	FALSE		

7. Führen Sie das Vorgehen 4 – 6 für alle Ausgänge durch.