

24V production line
Structured programming

S3
(I3)

1

3

4 2

S4
(I6)

S2
(I2)

S1
(I1)

Q1Q2

Q3

Q4

Q6

Q7

Q8

Q9

Q10

B1
(I4)

B2
(I5)

B3
(I7)

B4
(I8)

Pneumatic

Q5

Table of contents

Table of contents
5 Structured programming .. 1

5.1 Introduction .. 1

5.2 Function ... 2

5.3 Function module .. 3

5.4 Adding a new module ... 4

5.5 Block call .. 5

5.6 Parameter transfer.. 7

5.7 Calling a function (FC) in FBD ... 8

5.8 Calling a function block (FB) in FBD .. 10

5.8.1 Procedure Call with single instance ... 12

5.8.2 Call option as multi-instance (TIA portal) ... 15

5.8.3 Textual declaration as a multi-instance (CODESYS / Beckhoff) 15

5.9 Calling a function (FC) in ST / SCL .. 16

5.10 Calling a function block (FB) in ST / SCL ... 18

5.10.1 Procedure Call with single instance ... 19

5.10.2 Call option as multi-instance (TIA portal) ... 22

5.10.3 Textual declaration as a multi-instance (CODESYS / Beckhoff) 23

Structured programming - Introduction

1

5 Structured programming

5.1 Introduction

Structured programming in PLC systems is used to organize complex programs by
dividing them into smaller, clear blocks. This leads to improved readability,
maintainability and reusability of the code. The user program can be structured
according to technological or functional aspects.

In a PLC program, blocks such as functions (FC) and function blocks (FB) are used
to structure program sections.

The blocks should communicate with each other via their block interfaces instead
of accessing global variables directly. Parameters are transferred via inputs and
outputs as well as InOut parameters.

To execute the code blocks in the control program, they must be called.

Structured programming - Function

2

5.2 Function

Functions (FCs) are code blocks without memory. They have no data memory in
which the values of function block parameters could be stored. For this reason, all
interface parameters must be connected when a function is called. To save data
permanently, global data blocks must first be created.

Functions are ideal for tasks that do not require memory over several cycles, such
as mathematical calculations or logical operations.

A function contains a program that is always executed when the function is called
by another code block.

Picture 1 Example: Calling a function from MAIN

A function can also be called several times at different points within a program.

MAIN

Structured programming - Function module

3

5.3 Function module

Function blocks (FBs) are code blocks that permanently store their input variables,
output variables, pass-through variables and also the static variables in instance

data blocks so that they are also available after block processing. This is why
they are also referred to as blocks with memory.

Function blocks are used for tasks that cannot be realized with functions:

 Whenever times and counters are required in the building blocks or

 if information must be saved in the program (e.g. status of the step chain).

Function blocks are always executed when a function block is called by another
code block.

Picture 2 Example: Calling a function module from MAIN

A function module can also be called several times at different points within a
program.

A call to a function module is referred to as an instance. Each instance of a function
module is assigned a memory area that contains the data with which the function
module works.

MAIN

Instance
DB1

Structured programming - Add new module

4

5.4 Add new module

In the TIA Portal, the blocks are managed in the project navigation below the PLC
in the "Program blocks" folder.
Double-clicking on the "Add new block" command within the "Program blocks"
folder opens the "Add new block" dialog, which can be used to create a new block.

Picture 3 Adding a new module

The block type (2), name (3) and the desired programming language (4) must be
selected here.

Structured programming - Module call

5

5.5 Module call

To execute the code blocks in the control program, they must be called. The code
module responsible for cyclical program processing is usually referred to as "MAIN".
This is started by the operating system and forms the interface to the operating
system. The CPU processes the program code located in the "MAIN". The program
parts structured in functions and function blocks can be called within the "MAIN".

Picture 4 Module call in MAIN

Functions and function blocks structure the program, making it easier to read and
maintain.
All called blocks are processed one after the other.

Structured programming - Module call

6

The operating system of the CPU calls the " MAIN " again after the program cycle,
whereby all commands programmed in it are executed again.

A block can be processed by calling it from the "MAIN", for example. Alternatively, it
can also be called from an FB or FC, which in turn are called in the "MAIN".

Picture 5 Block call

Structured programming

Structured programming - Parameter transfer

7

5.6 Parameter transfer

Parameters (variables and variable values) can be transferred when calling
functions and function modules. The program code within the code module then
works with the transferred values of the formal parameters and can return results
via output parameters or the function value.

Data is exchanged via the function block interface. These are declared in the
function block interface of the function (FC) or function block (FB) and can be used
locally in the function block.

Picture 6 Formal parameters in the function block interface

When the block is called, these formal parameters are linked with actual
parameters (global variables of the PLC).

Picture 7 Transfer of the current parameters when calling

Structured programming - Calling a function (FC) in FBD

8

5.7 Calling a function (FC) in FBD

In order for the function to be processed, it must be called by the program. The call
can be made by inserting an empty box (TIA shortcut "F8"). After we have inserted
the empty box (1), we replace (2) the placeholders ("???") in the empty box with the
symbolic function block name, so the empty box is replaced by the corresponding
function block call.

Picture 8 Block call from empty box

In the TIA Portal, the desired module can also be called up using drag & drop by
dragging it from the project navigation to the desired position:

Picture 9 Block call in the TIA Portal

???

???

???

myF myFirstFC

Structured programming - Calling a function (FC) in FBD

9

Parameter transfer
If the called block has interface parameters, these are displayed. For functions, the
formal parameters must be supplied with actual parameters.

Picture 10 Function with function block interface

Parameters of type "Input" and "InOut" are displayed on the left of the function
block using connection legs. Parameters of type "Output" must be connected to
the right of the function block.

Example
After creating the "myFirstFC" function, it was called in the "Main" (OB1). The
parameters have not yet been transferred; the formal parameters to be linked were
initially provided with placeholders "<????>".

Picture 11 Function block interface in the TIA Portal

myFirstFC

in1 out1

inOut1 out2

myFirstFC

in1 out1

inOut1 out2

var1

var2

var3

var4

myFirstFC

in1 out1

inOut1 out2

Structured programming - Calling a function block (FB) in FBD

10

5.8 Calling a function block (FB) in FBD

In order for the function block to be processed, it must be called by the program.
The call can be made by inserting an empty box (TIA shortcut "F8"). After we have
inserted the empty box (1) and replaced the placeholders in the empty box with
the name of the function block, we replace the placeholder above the empty box
with the instance name (2).

Picture 12 Function block call from empty box

Alternatively, you can call up the function block using drag & drop as shown under
Calling up a function.

Parameter transfer
If the called function block has formal parameters in the block interface, these are
displayed. It is not always necessary to pass parameters for function blocks, as a
private memory area is already assigned to the instance.

Picture 13 Function block with parameter transfer

???

myF myFirstFB

inst

myFirstFB

instName

Structured programming - Calling a function block (FB) in FBD

11

Instantiate function module multiple times
If a function block (FB) is called twice (instantiated) in the user program, two
separate instances are created. In which they can save their data across the cycle.

Picture 14 Instantiation of two FBs

Call options
Depending on the type of calling function block, the instances can be located
directly in the function block interface (= multi-instance in the TIA Portal) or stored
as global instances (= single instance in the TIA Portal).

Example
For example, if the FB contains the user program for a calculation of switching
operations, each call represents an instance that only uses states at the runtime of
this call. A separate instance is required for each call.
This means that all data (information) relating to this calculation is available in this
assigned instance.
Before an instance can be created, the assigned FB must already exist.
The variables of the respective instance can be observed in this instance.

myFirstFB

in1 out1

inOut1 out1

???

myFirstFB

in1 out1

inOut1 out1

instName_1

myFirstFB

in1 out1

inOut1 out1

instName_2

Structured programming - Calling a function block (FB) in FBD

12

5.8.1 Procedure Call with single instance

The procedure for calling up the "myFirstFB" function block twice is now shown
step by step in the TIA portal:

1. Create the "myFirstFB" function module:

Picture 15 Adding a new block

2. Declaration of the function block interface and connection of the variables in
the instruction part of the function block:

Picture 16 FB with function block interface in the TIA Portal

Structured programming - Calling a function block (FB) in FBD

13

3. first call of "myFirstFB" in the first network of the OB "MAIN" using drag &
drop and declaration of the first instance as a single instance:

Picture 17 Instantiation of first block call

4. second call of "myFirstFB" in the second network of the OB "MAIN" using

drag & drop and declaration of the second instance as a single instance:

Picture 18 Instantiation second block call

Structured programming - Calling a function block (FB) in FBD

14

5. both instance data blocks can be observed:

Image 19 Actual values in the instances

Instance data blocks and the possibility of monitoring and controlling them
are described in detail in the next chapter (Data blocks).

Structured programming - Calling a function block (FB) in FBD

15

5.8.2 Call option as multi-instance (TIA portal)

If a function block is called in another function block, the multi-instance can also
be selected in the call options.
The number of instance data blocks can be reduced by using multi-instances.
When creating subroutines, the use of multi-instances is often absolutely
necessary. For example, if you want to implement a runtime counter in a control
module for a motor, each motor instance requires its own IEC counter instance.
Multi-instances are placed in the block interface of the calling block.

Picture 20 Call options in the TIA Portal

5.8.3 Textual declaration as a multi-instance (CODESYS / Beckhoff)

The textual declaration of the instances is made according to the following
scheme.

Syntax:
Instance name (variable name) : Block name (data type);

Example:

Picture 21 Declaration of the instances

Structured programming - Calling a function (FC) in ST / SCL

16

5.9 Calling a function (FC) in ST / SCL

We want to call the function in the program so that it is processed. A function call
without a return value in ST / SCL is made using the function name, followed by "()"
and a semicolon. The parameters are passed in the round brackets and the
semicolon concludes the statement.

Picture 22 Function call ST / SCL

In the TIA Portal, the desired module can also be called up using drag & drop by
dragging it from the project navigation to the desired position:

Picture 23 Block call in the TIA Portal

Parameter transfer
If the called block has interface parameters, these are displayed. For functions, the
formal parameters must be supplied with actual parameters.
Parameters are passed in round brackets, parameters are separated from each

other with ",".

Picture 24 Syntax function call, with parameter transfer in SCL

Parameters of type "Input" and "InOut" are assigned using ":=". Parameters of type

"Output" must be connected with "=>".

myFirstFC(in1 := var1,
inOut1 := var2,
out1 => var3,
out2 => var4);

myFirstFC

in1 out1

inOut1 out2

var1

var2

var3

var4

Structured programming - Calling a function (FC) in ST / SCL

17

Example
In this screen, the following interface parameters have been declared in the
"myFirstFC" function.

Picture 25 Function block interface of a function in the TIA Portal

After the "myFirstFC" function was created, it was called in "MAIN" (OB1). The
parameters have not yet been transferred and the formal parameters to be
connected are initially assigned placeholders. These placeholders provide
information about the data type and parameter type (Input, Output, InOut).

Picture 26 Module interface in the TIA Portal

Structured programming - Calling a function block (FB) in ST / SCL

18

5.10 Calling a function block (FB) in ST / SCL

To process the function block, we call it in the program. The main difference
between calling a function block (FB) is that an instance is assigned to it. The call is
similar to a function (FC), but instead of the function block name, the name of the
previously declared instance is used, followed by "()" and a semicolon. The
parameters are passed in the round brackets and the semicolon concludes the
instruction.

Picture 27 Syntax instance, without parameter transfer in SCL

Parameter transfer
If the called instance has interface parameters, these are displayed. It is not always
necessary to pass parameters for function blocks, as the instance is already
assigned a private memory area.

Picture 28 Syntax instance, with parameter transfer in SCL

Call options
Depending on the type of calling function block, the instances can be located
directly in the function block interface (= multi-instance in the TIA Portal) or stored
as global instances (= single instance in the TIA Portal).

Instantiate function module multiple times
If an FB is called twice in the user program, two instances exist. Each instance is
assigned its own memory area in which the instance can save its data throughout
the cycle.

Example
For example, if the FB contains the user program for a calculation of switching
operations, each call represents an instance that only uses states at the runtime of
this call. A separate instance is required for each call.
This means that all data (information) relating to this calculation is available in this
assigned instance.
Before an instance can be created, the assigned FB must already exist.
The variables of the respective instance can be observed in this instance.

Structured programming - Calling a function block (FB) in ST / SCL

19

5.10.1 Procedure Call with single instance

The procedure for calling up the "myFirstFB" function block twice is now explained
step by step in the TIA portal.

1. Create the "myFirstFB" function module:

Picture 29 Adding a new block

2. Declaration of the function block interface and connection of the variables in

the instruction part of the function block:

Picture 30 FB with function block interface in the TIA Portal

Structured programming - Calling a function block (FB) in ST / SCL

20

3. first call of "myFirstFB" in the "MAIN" OB using drag & drop and declaration
of the first instance as a single instance:

Picture 31 Instantiation of first block call

4. second call of "myFirstFB" in the OB "MAIN" using drag & drop and

declaration of the second instance as a single instance:

Picture 32 Instantiation second block call

Structured programming - Calling a function block (FB) in ST / SCL

21

5. both instance data blocks can be observed:

Picture 33 Actual values in the instances

Instance data blocks and the possibility of monitoring and controlling them
are described in detail in the next chapter (Data blocks).

Structured programming - Calling a function block (FB) in ST / SCL

22

5.10.2 Call option as multi-instance (TIA portal)

If a function block is called in another function block, the multi-instance can also
be selected in the call options.
The number of instance data blocks can be reduced by using multi-instances.
When creating subroutines, the use of multi-instances is often absolutely
necessary. For example, if you want to implement a runtime counter in a control
module for a motor, each motor instance requires its own IEC counter instance.
Multi-instances are placed in the block interface of the calling block.

Picture 34 Call options in the TIA Portal

Structured programming - Calling a function block (FB) in ST / SCL

23

5.10.3 Textual declaration as a multi-instance (CODESYS / Beckhoff)

The textual declaration of the instances is made according to the following
scheme.

Syntax:
Instance name (variable name) : Block name (data type);

Example:

Picture 35 Declaration and call of the instance

Structured programming - Calling a function block (FB) in ST / SCL

24

Instantiate function module multiple times
If an FB is called twice in the user program, two instances exist. Each instance is
assigned its own memory area in which the instance can save its data throughout
the cycle.

Picture 36 Instantiation of two FBs

//Declaration in the function block interface
VAR

instName_1 : myFirstFB; //Instance 1
instName_2 : myFirstFB; //Instance 2

END_VAR

//Implementation in the program
//Call 1
instName_1(in1:= ,

inOut1:= ,
out1=> ,
out2=>);

//Call 2
instName_2(in1:= ,

inOut1:= ,
out1=> ,
out2=>);

	5 Structured programming
	5.1 Introduction
	5.2 Function
	5.3 Function module
	5.4 Add new module
	5.5 Module call
	5.6 Parameter transfer
	5.7 Calling a function (FC) in FBD
	5.8 Calling a function block (FB) in FBD
	5.8.1 Procedure Call with single instance
	5.8.2 Call option as multi-instance (TIA portal)
	5.8.3 Textual declaration as a multi-instance (CODESYS / Beckhoff)

	5.9 Calling a function (FC) in ST / SCL
	5.10 Calling a function block (FB) in ST / SCL
	5.10.1 Procedure Call with single instance
	5.10.2 Call option as multi-instance (TIA portal)
	5.10.3 Textual declaration as a multi-instance (CODESYS / Beckhoff)

