

24V production line
Program instructions

S3
(I3)

1

3

4 2

S4
(I6)

S2
(I2)

S1
(I1)

Q1Q2

Q3

Q4

Q6

Q7

Q8

Q9

Q10

B1
(I4)

B2
(I5)

B3
(I7)

B4
(I8)

Pneumatic

Q5

Table of contents

Table of contents
7 Program instructions ... 1

7.1 Flip-flops ... 1

7.1.1 Dominant resetting flip-flop ... 2

7.1.2 Dominant setting flip-flop .. 5

7.1.3 Exercise - Dominance behavior.. 8

7.2 Flanks ... 13

7.2.1 Recognize positive edge R_TRIG ... 14

7.2.2 Recognize negative edge F_TRIG ... 16

7.3 Times .. 18

7.3.1 Switch-on delay TON .. 20

7.3.2 Switch-off delay TOF ... 22

7.3.3 Pulse TP ... 24

7.3.4 Exercise - IEC time functions ... 26

7.4 Counter ... 31

7.4.1 Count forward CTU .. 33

7.4.2 Counting backwards CTD .. 35

7.4.3 Counting forwards and backwards CTUD .. 37

7.4.4 Exercise - IEC meter .. 39

7.5 IF statement [ST / SCL] ... 44

7.5.1 IF...THEN - Instruction.. 44

7.5.2 IF...THEN...ELSE statement ... 45

7.5.3 IF...THEN...ELSIF - Instruction ... 46

7.6 CASE structure [ST / SCL] ..48

Program instructions - Flipflops

1

7 Program instructions

7.1 Flipflops

A flip-flop is a basic digital storage element that can store a binary state (0 or 1). It
holds a momentary signal state and can be set or reset by special control
commands.

Memory functions play a decisive role in PLC programming, especially in the
control of sequential processes and the management of states. They are
fundamental for the implementation of logics that go beyond simple on/off
controls.

Here are some key aspects of what memory functions are used for:

Condition maintenance:
Memory functions enable a PLC to maintain the status of inputs, internal
states or outputs over time. This is particularly important in applications
where states need to be maintained over a cycle or even over several cycles,
such as when starting/stopping motors or monitoring safety functions.

Control of processes:
In production processes where certain steps have to be carried out in a set
sequence, memory functions help to save the current step and activate the
next step based on the conditions fulfilled.

Debouncing of input signals:
Memory functions can be used to minimize the effects of bouncing or
interference on input signals. Storing a stable state of an input prevents
short-term fluctuations from leading to unwanted actions.

Interference treatment:
Memory functions can be used to record and save error states as soon as
they occur. The fault can be reset by a user acknowledgement, for example.

Process control:
Storage functions are indispensable for processes that do not run
continuously, but where actions have to be started or stopped depending on
certain events. They enable the storage of events or states that can be
queried and processed at a later point in time.

A save function is characterized by a set command and a reset command.
marked. A data area for saving the signal status must be specified above the
memory function.
The memory function can be set with dominant (priority) or dominant
be executed with resetting memory behavior. The dominant input is identified by a
"1".

Program instructions - Flipflops

2

7.1.1 Dominant resetting flip-flop

Use the instruction to set or reset the bit of a specified operand, depending on the
signal status at the Set and Reset1 inputs. The current signal status of the operand
is transferred to output Q and can be queried at this output. The dominant
behavior is indicated by the "1" at the Reset input.

Picture 1 Pulse diagram - flip-flop dominant resetting

T1
If the signal status at the Set input is "1" and at the Reset1 input is "0", the specified
operand is set to "1".

T2
If the signal status at the Set input is "0" and at the Reset1 input is "1", the specified
operand is reset to "0".

T3
The Reset1 input dominates the Set input. With a signal status of "1" at both inputs
Set and Reset1, the signal status of the specified operand is reset to "0".

T4
If the signal state is "0" at both inputs Set and Reset1, the instruction is not
executed. In this case, the signal status of the operand remains unchanged.

1

0

1

0

1

0

Set

Reset1

Q

T1 T2 T3 T4

Program instructions - Flipflops

3

At Siemens, the dominant resetting flip-flop corresponds to the "SR" instruction.
A variable of the data type "BOOL" must be connected above the function block
call as memory.

Picture 2 Flip-flop dominant resetting - Siemens

In CODESYS and Beckhoff, this is realized by the "RS" instruction. An instance of
the data type "RS" must be connected above the function block call, as this is a
function block call.

Picture 3 Flip-flop dominant resetting - Beckhoff

In the ST textual programming language, controller manufacturers such as

Beckhoff or CODESYS offer the option of calling the RS element as a reset-

dominant flip-flop, also as a function block. For this purpose, just as in FBD, an

instance of type "RS" must be declared in the function block interface, which is

then called in the implementation part.

Picture 4 ST instruction - dominant resetting

Program instructions - Flipflops

4

This option is not available with Siemens controllers. Here, the flip-flop must be
programmed using an IF instruction.

Picture 5 IF statement - dominant resetting

The function of the IF instruction is described in detail in this chapter under
"7.5 IF instruction [ST /SCL]".

Alternatively, this can also be implemented by logically linking a self-hold.

Picture 6 Logical link - dominant resetting

// IF statement
IF Reset1 THEN

Q := false;
ELSIF Set THEN

Q := true;
END_IF;

Program instructions - Flipflops

5

7.1.2 Dominant setting flip-flop

Use the Reset or Set instruction to set the bit of a specified operand, depending on
the signal status at the Reset and Set1 inputs. The current signal status of the
operand is transferred to output Q and can be queried at this output.
Dominance behavior is indicated by the "1" at the set input.

Picture 7 Pulse diagram - flip-flop dominant setting

T1
If the signal status at input Set1 is "1" and at input Reset "0", the specified operand is
set to "1".

T2
If the signal status at the Reset input is "1" and at the Set1 input is "0", the specified
operand is reset to "0".

T3
The Set1 input dominates the Reset input. With a signal status of "1" at both inputs,
Reset and Set1, the signal status of the specified operand is set to "1".

T4
If the signal state is "0" at both inputs Reset and Set1, the instruction is not
executed. In this case, the signal status of the operand remains unchanged.

1

0

1

0

1

0

Set1

Reset

Q

T1 T2 T3 T4

Program instructions - Flipflops

6

With Siemens, the dominant setting flip-flop corresponds to the "RS" instruction.
A variable of the data type "BOOL" must be connected above the function block
call as memory.

Picture 8 Flip-flop dominant setting - Siemens

In CODESYS and Beckhoff, this is realized by the "SR" instruction. An instance of
the data type "SR" must be connected above the function block call, as this is a
function block call.

Picture 9 Flip-flop dominant setting - Beckhoff

In the ST textual programming language, control manufacturers such as

Beckhoff or CODESYS offer the option of calling the SR element as a set-
dominant flip-flop, also as a function block. For this purpose, just as in FBD, an
instance of type "SR" must be declared in the function block interface, which is
then called in the implementation part.

Picture 10 ST instruction - dominant setting

Program instructions - Flipflops

7

This option is not available with Siemens controllers. Here, the flip-flop must be
programmed using an IF instruction.

Picture 11 IF statement - dominant setting

The function of the IF instruction is described in detail in this chapter under
"7.5 IF instruction [ST /SCL]".

Alternatively, this can also be implemented by logically linking a self-hold.

Picture 12 Logical link - dominant setting

Program instructions - Flipflops

8

7.1.3 Exercise - Dominance behavior

Goal
In this exercise, the dominance behavior of the two flip-flops SR and RS is to
be programmed in a test function block and learned in practice.
The "set_signal" input parameter is used to control the set input of the two
memory elements. The "reset_signal" parameter is responsible for resetting.
The status of the SR flip-flop is displayed via the "output_sr" output
parameter, that of the RS flip-flop via the "output_rs" output.

Task
 Create a function block with the following function block interface:

 The following program is to be implemented:

Program instructions - Flipflops

9

 Call up the created module in "MAIN".

 The input variables can be controlled and the output variables monitored via
the instance. Alternatively, if available, these can also be connected to
buttons and display elements via the function block interface when called.

If only the "set_signal" or "reset_signal" input is activated, both memory
elements behave identically. If "set_signal" and "reset_signal" are set to
"TRUE" at the same time, the outputs "output_sr" and "output_rs" differ in
their signal status due to the different dominance behavior.

Alternatively, the prepared block "Test_Flipflop [FB5]" from the template
project "Grundlagen_Programmanweisungen.zap17" can also be used.

The "Commissioning (software)" chapter can provide additional assistance in
interpreting the program status.

Program instructions - Flipflops

10

Procedure:
1. create a new function block, select the desired programming language and

assign a meaningful name:

2. declare the following variables in the function block interface:

Program instructions - Flipflops

11

3. implement the following program, the storage functions can be found in the
TaskCard under "Instructions" "Simple instructions" "Bit links". These can
be dragged and dropped into the workspace:

4. call up the function block in "MAIN" and create an instance.

Program instructions - Flipflops

12

5. Use the instance to set the "set_signal" and "reset_signal" input variables to
"TRUE" one after the other, then set both input variables to "TRUE" at the
same time and monitor the "output_sr" and "output_rs" output variables:

Program instructions - Flanks

13

7.2 Flanks

Edges in PLC programming are important for recognizing certain events that
occur when the signal changes. An edge evaluation records whether the state of a
binary signal has changed compared to the previous program cycle.

According to IEC 61131, the following edges are available:

 Positive edge (R_TRIG)

 Negative edge (F_TRIG)

Flanks are required, for example, for:

Event detection:
Edges make it possible to recognize specific events that occur exactly when
the signal transitions. This is useful for triggering actions exactly when a
signal changes, not while it remains in a certain state.

Clock-controlled processes:
In many applications, it is necessary to start processes synchronously with
certain signal changes.

Event-controlled actions:
In automation technology, certain actions often have to be started at the
exact moment when a switch is actuated or a sensor detects an event. Edge
detection makes this possible precisely and prevents malfunctions.

Interrupts and timings:
In real-time applications, edges can be used to generate interrupts in order
to react immediately to external events. They also enable precise timings
and time measurements.

When the signal (edge) of a binary signal changes, the edge evaluation outputs a
pulse. This pulse is only present for one cycle.
To detect the signal change (edge), the current state (actual state) is compared
with the previous state (past value) of the signal. In each program cycle, the old
signal status (historical value) is compared with the current signal status. To do this,
the evaluation requires a memory (instance).

Program instructions - Flanks

14

7.2.1 Recognize positive edge R_TRIG

With the IEC instruction "R_TRIG", detect positive signal edge, you can detect a
status change from "0" to "1" at input CLK.

Picture 13 FBD-instruction R_TRIG and pulse diagram

Current cycle 6
The instruction compares the current value at input CLK (cycle 6) with the status of
the previous query (edge memory, cycle 5), which is stored in the instance.

 If CLK is "1" and the edge memory is "0", a positive edge has been detected.

 If the instruction has detected a change of state at input CLK from "0" to "1",
output Q is set to "1".

 The edge memory is set to the signal status of the current signal. Edge
memory "1".

Current cycle 7
The instruction compares the current value at input CLK (cycle 7) with the status of
the previous query (edge memory, cycle 6), which is stored in the instance.

 If CLK is "1" and the edge memory is "1", no edge was detected.

 If the instruction has not detected a signal change at input CLK from "0" to
"1", output Q is set to "0".

 The edge memory is set to the signal status of the current signal. Edge
memory "1".

If the instruction detects a signal change at input CLK from "0" to "1", a pulse is
generated at output Q, i.e. the output carries the value "1" for one cycle.
In all other cases, the signal status at the output of the instruction is "0".

Each call of the "Detect positive signal edge" instruction must be assigned an
instance of the "R_TRIG" data type, in which the instance data is stored.

???

CLK Q

R_TRIG

Instance

PulseSignal

1

0

1

0

Q

CLK

54 7610 32 8 9 Cycle

Program instructions - Flanks

15

Textual conversion Recognize positive signal edge (R_TRIG)
The R_TRIG edge module is instantiated in a similar way to a function module. A
separate memory area is required for each call of the "R_TRIG" function block. The
instance data can be created either as a single instance or as a multi-instance (in
the function block interface).

Example:

Picture 14 ST/SCL instruction R_TRIG

//Declaration, Interface
VAR

instRtrig : R_TRIG; // Declaration of instance (Multi-instance)
END_VAR

//Instruction, instance call
instRtrig(CLK := varBoolClk,

Q => varBoolQ);

Program instructions - Flanks

16

7.2.2 Recognize negative edge F_TRIG

You can use the "Detect negative signal edge" instruction to detect a change of
state from "1" to "0" at input CLK.

Picture 15 FBD instruction F_TRIG and pulse diagram

Current cycle 6
The instruction compares the current value at input CLK (cycle 6) with the status of
the previous query (edge memory, cycle 5), which is stored in the instance.

 If CLK is "0" and the edge memory is "1", a negative edge has been detected.

 If the instruction has detected a signal change at input CLK from "1" to "0",
output Q is set to "1".

 The edge memory is set to the signal status of the current signal. Edge
memory "0".

Current cycle 7
The instruction compares the current value at input CLK (cycle 7) with the status of
the previous query (edge memory, cycle 6), which is stored in the instance.

 If CLK is "0" and the edge memory is "0", no edge was detected.

 If the instruction has not detected a signal change at input CLK from "1" to
"0", output Q is set to "0".

 The edge memory is set to the signal status of the current signal. Edge
memory "0".

If the instruction detects a change of state at input CLK from "1" to "0", a pulse is
generated at output Q, i.e. the output carries the value "1" for one cycle.
In all other cases, the signal status at the output of the instruction is "0".

An instance of the data type "F_TRIG", in which the instance data is stored, must be
assigned to each call of the "Detect negative signal edge" instruction.

???

CLK Q

F_TRIG

Instance

PulseSignal

1

0

1

0

Q

CLK

54 7610 32 8 9 Cycle

Program instructions - Flanks

17

Textual conversion Recognize negative signal edge (F_TRIG)
The F_TRIG edge module is instantiated in a similar way to a function module. A
separate memory area is required for each call of the "F_TRIG" function block. The
instance data can be created either as a single instance or as a multi-instance (in
the function block interface).

Example:

Picture 16 ST/SCL instruction F_TRIG

Behavior after CPU startup
The IEC 61131 standard describes that the "F_TRIG" instruction sets the "Q"
output to TRUE for one cycle if the "CLK" input has the value FALSE when
the CPU starts up.

//Declaration, Interface
VAR

instFtrig : F_TRIG; // Declaration of instance (Multi-instance)
END_VAR

//Instruction, instance call
instFtrig(CLK := varBoolClk,

Q => varBoolQ);

Program instructions - Times

18

7.3 Times

Time functions can be used to trigger time-controlled actions in the program. They
are triggered by a binary signal. The result of the evaluation is also a binary signal.
Time functions are instructions that have an instance.

The following time functions are available in accordance with IEC 61131:

 Pulse generation (TP)
 Switch-on delay (TON)
 Switch-off delay (TOF)

The maximum time range that can be displayed depends on the selected data
type.

 TIME format (32-bit) maximum time range: ~24 days
 Format LTIME (64-bit) maximum time range: ~106751 days (292 years)

In the TIA Portal, the data type can be set directly on the instruction using the
drop-down menu.

Picture 17 Data type of the time function (Siemens)

In Codesys / Beckhoff, separate function blocks are available for 64-bit time
operations:

 LTP
 LTON
 LTOF

Examples of fair values:
Syntax Meaning

T#5s 5 seconds

T#1d3h5m30s500ms
1 day, 3 hours, 5 minutes, 30 seconds and 500
milliseconds

LTIME#50d3h 50 days and 3 hours

Program instructions - Times

19

Here are some important applications and the benefits of time functions in PLC
programming:

Control delays:
Time functions allow delays to be introduced into control processes. For
example, the starting of a motor can be delayed after a trigger signal has
been triggered.

Sequence control:
If processes have to be executed in certain time intervals, time functions
ensure that each step is activated for as long as defined.
will.

Monitoring of time conditions:
Time functions help to monitor processes by ensuring that certain actions
are completed within set time limits.

Pulse generation:
Pulsating signals are required in many applications. Time functions generate
these pulses at predefined intervals.

Implement waiting times:
Time functions are useful for setting up waiting times, for example to avoid
overloading the machine.

Program instructions - Times

20

7.3.1 Switch-on delay TON

The "Generate switch-on delay" instruction delays the setting of output Q (Output)
by the parameterized time PT (Preset Time). The current time value can be queried
at output ET (Elapsed Time). The time value starts at T#0s and ends when the time
duration PT is reached. As soon as the signal status at input IN (Input) changes to
"0", output ET is reset.

Picture 18 FBD instruction TON and pulse diagram

T1
The instruction starts when the logic operation result (VKE) at input IN changes
from "0" to "1" (positive signal edge). From this moment, the programmed time PT
starts to run.

T2
As soon as the time period PT has elapsed, output Q is set to signal state "1".

T3
Q remains set as long as the start input is "1". If the signal status at the start input
changes from "1" to "0", output Q is reset.

T4
A new positive signal edge at the start input restarts the time function.

Each call of the "Create switch-on delay" instruction must be assigned an instance
of the "TON" data type, in which the instance data is stored.

???

IN ET

TON

PT Q

Instance

1

0
IN

ET

PT

Q 1

0

2

3

4

1

0

[s]

PT

t

t

t

[bool]

[bool] PT

T1 T2 T3 T4

Program instructions - Times

21

Textual conversion Create switch-on delay (TON)
The TON switch-on delay is instantiated in a similar way to a function block. A
separate memory area is required for each instance of the "TON" function block.
The instance data can be created either as a single instance or as a multi-instance
(in the function block interface).

Example:

Picture 19 ST/SCL instruction TON

//Declaration, Interface
VAR

instTon : TON; // Declaration of instance (Multi-instance)
END_VAR

//Instruction, instance call
instTon(IN := varBoolIn,

PT := varTimePt,
Q => varBoolQ,
ET => varTimeEt);

Program instructions - Times

22

7.3.2 Switch-off delay TOF

Use the "Generate switch-off delay" instruction to delay the resetting of output Q
(Output) by the programmed time PT (Preset Time). The current time value can be
queried at output ET (Elapsed Time). The time value starts at T#0s and ends when
the time duration PT is reached. After the time PT has elapsed, the ET output
remains at the current value until the IN input changes back to "1". If the input IN
changes to "1" before the time PT has elapsed, the output ET is reset to T#0s.

Picture 20 FBD instruction TOF and pulse diagram

T1
Output Q is activated when the logic operation result (VKE) at input IN changes
from "0" to "1" (positive edge).

T2
When the input IN changes back to "0" (negative edge), the programmed time PT
starts to run. Output Q remains activated as long as the time PT is running.
T3
After PT has elapsed, output Q is reset.
T4
If the input signal IN changes to "1" before the time PT has elapsed, the time is reset
and output Q remains activated.

Each call of the "Create switch-off delay" instruction must be assigned an instance
of the "TOF" data type, in which the instance data is saved.

T4T3T2T1

???

IN ET

TOF

PT Q

Instance

1

0
IN

ET

PT

Q 1

0

2

3

4

1

0

[s]

PT

t

t

t

[bool]

[bool] PT

Program instructions - Times

23

Textual conversion Generate switch-off delay (TOF)
The TOF switch-off delay is instantiated in a similar way to a function block. A
separate memory area is required for each call of the "TOF" function block. The
instance data can be created either as a single instance or as a multi-instance (in
the function block interface).

Example:

Picture 21 ST/SCL instruction TOF

//Declaration, Interface
VAR

instTof : TOF; // Declaration of instance (Multi-instance)
END_VAR

//Instruction, instance call
instTof(IN := varBoolIn,

PT := varTimePt,
Q => varBoolQ,
ET => varTimeEt);

Program instructions - Times

24

7.3.3 Pulse TP

Use the "Generate pulse" instruction to activate output Q (Output) for a
programmed period of time. You can query the current time value at output ET
(Elapsed Time). The time value starts at T#0s and ends when the value of PT (Preset
Time) is reached. If PT has elapsed and the input signal IN (Input) is "0", the output
ET is reset.

Picture 22 FBD instruction TP and pulse diagram

T1
When the input IN changes from "0" to "1", the programmed time PT starts to run
and the output Q changes to "1".

T2
After the time PT has elapsed, the output Q changes from "1" to "0", regardless of
whether the input signal IN is still "1".

T3
When the time period PT has elapsed and the input IN changes from "0" to "1", the
programmed time period PT starts to run again and the output Q changes to "1".

T4
Output Q remains activated for the duration of PT, regardless of how the input
signal continues to behave. While PT is running, a new positive edge at input IN
has no influence on output Q and the elapsed time PT.

Each call of the "Generate pulse" instruction must be assigned an instance of the
"TP" data type, in which the instance data is stored.

T4T3T2T1

1

0
IN

ET

PT

Q 1

0

2

3

4

1

0

[s]

[bool]

[bool]

t

t

t

PT

???

IN ET

TP

PT Q

Instance

Program instructions - Times

25

Textual conversion Generate impulse (TP)
The TP pulse function block is instantiated in a similar way to a function block. A
separate memory area is required for each call of the "TP" function block. The
instance data can be created either as a single instance or as a multi-instance (in
the function block interface).

Example:

Picture 23 ST/SCL instruction TP

//Declaration, Interface
VAR

instTp : TP; // Declaration of instance (Multi-instance)
END_VAR

//Instruction, instance call
instTp(IN := varBoolIn,

PT := varTimePt,
Q => varBoolQ,
ET => varTimeEt);

Program instructions - Times

26

7.3.4 Exercise - IEC time functions

Goal
In this exercise, the 3 IEC time functions (TP, TON, TOF) are programmed in a
test function block and familiarized with them in practice.
The time functions can be started via the "input_signal" input parameter.
The status is displayed via the output parameters "output_TP",
"output_TON", "output_TOF".

Task
 Create a function block with the following function block interface:

 Depending on the selected programming language, the following program
is to be implemented:

Program instructions - Times

27

 Call up the created module in "MAIN".

 The input variables can be controlled and the output variables monitored via
the instance. Alternatively, if available, these can also be connected to
buttons and display elements via the function block interface when called.
The passage of time can also be monitored in the individual instances of the
time functions.

Alternatively, the prepared blocks "Test_IEC_Timer_FUP[FB1]" or
"Test_IEC_Timer_SCL[FB2]" from the template project
"Grundlagen_Programmanweisungen.zap17" can also be used.

The "Commissioning (software)" chapter can provide additional assistance in
interpreting the program status.

Program instructions - Times

28

Procedure:
1. create a new function block, select the desired programming language and

assign a meaningful name:

2. declare the following variables in the function block interface:

Program instructions - Times

29

3. implement the following program, the time functions can be found in the
TaskCard under "Instructions" "Simple instructions" "Times" :

4. call up the function module in "MAIN" and create an instance:

Program instructions - Times

30

5. Use the instance to control the input variable "input_signal" and observe the
output variables "output_TP", "output_TON", "output_TOF", as well as the
individual instances of the time functions in the corresponding instance
data block:

Program instructions - Counter

31

7.4 Counter

Counting functions can count a numerical value up or down in response to the
pulse of a binary signal. These are instructions that require an instance.

The following counting functions are available in accordance with IEC 61131:

 Up counter (CTU)
 Down counter (CTD)
 Up and down counter (CTUD)

The maximum displayable counting range depends on the selected data type.

In the TIA Portal, the data type can be set directly on the instruction using the
drop-down menu.

Picture 24 Data type of the counting function (Siemens)

Codesys has its own function blocks for 64-bit counting operations:
 LCTU
 LCTD
 LCTUD

Program instructions - Counter

32

Here are some important applications and the benefits of counting functions in
the
Automation technology:

Production monitoring:
Counting functions are used to monitor the number of units produced. This
is particularly important in the manufacturing industry to ensure that
production targets are met.

Inventory and material flow control:
They help to monitor material movements within a production facility. For
example, it is possible to count how often a part passes through a particular
station, which helps to optimize the material flow and control stock levels.

Security applications:
Counting functions can also be used in safety-critical applications to monitor
the number of times a device or machine has been used. This can be
important in order to comply with maintenance intervals.

Control of sequential processes:
Counting functions provide precise control over the frequency with which
certain actions are executed in a program. They are particularly useful in
situations where a process has to be repeated several times before the
program sequence moves on to the next step.

Batch processing:
In the chemical industry or in food processing, counting functions can be
used to monitor the number of batches that have gone through a process,
which contributes to quality control and documentation.

Program instructions - Counter

33

7.4.1 Count forward CTU

You can program an up-counter with the IEC-CTU counter. A positive edge at input
CU (Count Up) increases the value at output CV (Current Value). If the value
specified at input PV (Preset Value) is reached or exceeded, output Q (Output) is
switched. The counter value can be set to 0 via input R (Reset).

Picture 25 FBD instruction CTU and pulse diagram

T1
If the signal at input CU changes from "0" to "1" (positive edge), the counter value at
output CV is increased by one.

T2
Output Q indicates the status of the counter. The signal status of Q is determined
by the parameterized setpoint PV. If the current counter value reaches or exceeds
the parameterized setpoint PV, output Q is set to "1". Otherwise, the signal status of
Q remains "0". A constant or a variable can be specified in the PV parameter.

T3
The counting process is repeated on each positive edge until the count value
reaches the maximum value of the data type defined at output CV. Once this limit
value is reached, the count value remains constant, regardless of the signal status
at input CU.

T4
If there is a positive edge at input R, the counter value at output CV is reset to "0".

???

CU

CTU

R CV

Instance

PV Q

0

1

0

CU

CV
1

2

3

4

..

R 1

0

PV
2

3

4

1

0

Q 1

0

Max.

T4T3T1 T2

Program instructions - Counter

34

Each call of the "Count up" instruction must be assigned an instance of the "CTU"
data type, in which the instance data is stored.

Textual conversion up counter (CTU)
The up-counter CTU is instantiated in a similar way to a function block. A separate
memory area is required for each call of the "CTU" function block. The instance data
can be created either as a single instance or as a multi-instance (in the function
block interface).

Example:

Picture 26 ST/SCL instruction CTU

//Declaration, Interface
VAR

instCtu : CTU; //Declaration of instance (Multi-instance)
END_VAR

//Instruction, instance call
instCtu(CU := varBoolCu,

R := varBoolR,
PV := varIntPv,
CV => varIntCv,
Q => varBoolQ);

Program instructions - Counter

35

7.4.2 Count down CTD

You can program a down counter with the IEC-CTD counter.
With a positive edge at input CD (Count Down), i.e. when the signal status changes
from "0" to "1", the current count value at output CV (Current Value) is reduced by
one. Output Q (Output) shows the status of the counter. As soon as the counter
value is less than or equal to "0", output Q switches to "1". If the signal status at
input LD (Load) changes from "0" to "1", the counter value at output CV is loaded to
the value of parameter PV (Preset Value).

Picture 27 FBD instruction CTD and pulse diagram

T1
With a positive edge at input CD, the current count value at count value CV is
reduced by one.

T2
This process is repeated with each positive edge until the count value CV reaches
the lower limit value of the specified data type. If the current count value CV is less
than or equal to 0, output Q is set to "1".

T3
If the lower limit value of the specified data type is reached, output Q remains at "1"
and input CD has no further influence.

T4
If there is a positive edge at input LD, the value specified at input PV is loaded into
the CV.

???

CD

CTD

LD CV

Instance

PV Q

0

1

0

CD

CV
1

2

3

4

5

LD 1

0

PV
2

3

4

1

0

Q 1

0

6

T4T3T1 T2

Program instructions - Counter

36

Each call of the "Count backwards" instruction must be assigned an instance of the
"CTD" data type, in which the instance data is stored.

Textual conversion down counter (CTD)
The CTD down counter is instantiated in a similar way to a function block. A
separate memory area is required for each call of the "CTD" function block. The
instance data can be created either as a single instance or as a multi-instance (in
the function block interface).

Example:

Picture 28 ST/SCL instruction CTD

//Declaration, Interface
VAR

instCtd : CTD; //Declaration of instance (Multi-instance)
END_VAR

//Instruction, instance call
instCtd(CD := varBoolCd,

LD := varBoolLd,
PV := varIntPv,
CV => varIntCv,
Q => varBoolQ);

Program instructions - Counter

37

7.4.3 Counting forwards and backwards CTUD

With the "Count up and down" instruction, the count value at output CV (Current
Value) is both increased and decreased. A positive edge at input CU (Count Up)
increases the count value by one, while a positive signal edge at input CD (Count
Down) decreases the count value by one. A positive edge at input R (Reset) resets
the CV output to 0. A positive edge at input LD (Load) loads the value specified at
input PV (Preset Value) into the counter value CV. The counter has an output QU
(Count Up Output), which is set if the current count value CV is greater than or
equal to the value specified at input PV. The counter has a QD (Count Down
Output), which is set when the current count value CV is less than or equal to 0.

If a positive signal edge occurs at both inputs in a program cycle, the
counter value remains unchanged.

Picture 29 FBD instruction CTUD and pulse diagram

T1
A positive edge at input CU increases the counter value CV by one.

T2
Output QU is set to "1" if the current counter value CV is greater than or equal to
the value specified at input PV.

T3
The count value CV can be counted up to the upper or lower limit value of the
specified data type.

T4
Each positive edge at input CD reduces the current count value CV by one. If the
current count value CV is less than or equal to the value specified at input PV,
output QD is reset.

0

1

0

1

0

CU

CV
1

2

3

4

1

0
R

1

0
LD

CD

PV
2

3

4

1

0

QD 1

0

QU 1

0

???

CU

CTUD

CD

Instance

R QD

LD CV

PV QU

T5T4T1 T2

Max
..

T3 T6

Program instructions - Counter

38

T5
A positive edge at input R sets the current counter value to "0", whereby output QD
is set.

T6
A positive edge at input LD sets the current counter value to the value specified at
input PV, whereby output QD is set.

Each call of the "Count up and down" instruction must be assigned an instance of
the "CTUD" data type, in which the instance data is stored.

Textual conversion of up and down counters (CTUD)
The CTUD up and down counter is instantiated in a similar way to a function block.
A separate memory area is required for each call of the "CTUD" function block. The
instance data can be created either as a single instance or as a multi-instance (in
the function block interface).

Example:

Picture 30 ST/SCL instruction CTUD

//Declaration, Interface
VAR

instCtud : CTUD; //Declaration of instance (Multi-instance)
END_VAR

//Instruction, instance call
instCtud(CU := varBoolCu,

CD := varBoolCd,
R := varBoolR,
LD := varBoolLd,
PV := varIntPv,
QD => varBoolQd,
CV => varIntCv,
QU => varBoolQu);

Program instructions - Counter

39

7.4.4 Exercise - IEC meter

Goal
In this exercise, the 3 IEC counters (CUT, CTD, CTUD) are programmed in a
test function block and familiarized with them in practice.
The "countUp_signal" and "countDown_signal" input parameters can be
used to positively or negatively influence the count status and set to defined
values via the "reset_signal", "load_signal" and "presetValue" input
parameters. The status is displayed via the output parameters
"output_CountUp", "output_CountDown", "output_Up_UpDown",
"output_Down_UpDown".

Task
 Create a function block with the following function block interface:

 Depending on the selected programming language, the following program
is to be implemented:

Program instructions - Counter

40

 Call up the created module in "MAIN".

 The input variables can be controlled and the output variables monitored via
the instance. Alternatively, if available, these can also be connected to
buttons and display elements via the function block interface when called.
The count can also be monitored in the individual instances of the counters.

Alternatively, the prepared blocks "Test_IEC_Counter_FUP[FB3]" or
"Test_IEC_Counter_SCL[FB4]" from the template project
"Grundlagen_Programmanweisungen.zap17" can also be used.

The "Commissioning (software)" chapter can provide additional assistance in
interpreting the program status.

Program instructions - Counter

41

Procedure:
1. create a new function block, select the desired programming language and

assign a meaningful name:

2. declare the following variables in the function block interface:

Program instructions - Counter

42

3. implement the following program, the counting functions can be found in
the TaskCard under "Instructions" "Simple instructions" "Counter" :

4. call up the function block in "MAIN" and create an instance:

Program instructions - Counter

43

5. Use the instance to control the input variables and monitor the output
variables and the individual instances of the counting functions in the
corresponding instance data block:

Program instructions - IF statement [ST / SCL]

44

7.5 IF statement [ST / SCL]

In the ST / SCL programming language, the IF statement is used to control
conditional sequences. This statement can be used to control the program flow
depending on certain conditions. The use of IF, ELSE and ELSIF statements in SCL
is described below.

7.5.1 IF...THEN - Instruction

The IF...THEN statement (execute conditionally) is used to execute a statement
block depending on a condition.

The basic structure of this instruction is as follows:

Picture 31 Code example IF...THEN statement

Structure program

Picture 32 Structure chart IF...THEN statement

Example

Picture 33 Example IF...THEN statement

In this example, the "Alarm" variable is set to "TRUE" if the "Temperature > 100"
condition is met.

IF (*condition*) THEN
//statement

END_IF;

IF <condifion>

TRUE FALSE

statement

Program instructions - IF statement [ST / SCL]

45

7.5.2 IF...THEN...ELSE - statement

The IF...THEN...ELSE statement (conditional branching) is used to simply branch a
statement block depending on a condition.
The ELSE statement is used to execute alternative statements if the condition of
the IF statement is not fulfilled.

The basic structure of this instruction is as follows:

Picture 34 Code example IF...THEN...ELSE statement

Struktogram

Picture 35 Structure chart IF...THEN...ELSE statement

Example

Picture 36 Example IF...THEN...ELSE statement

In this example, the "Alarm" variable is set to "TRUE" if the "Temperature > 100"
condition is met. Otherwise, "Alarm" is set to "FALSE".

IF (*condition*) THEN
//statement 1

ELSE
//statement 2

END_IF;

IF <condifion>

TRUE FALSE

statement 1 statement 2

Program instructions - IF statement [ST / SCL]

46

7.5.3 IF...THEN...ELSIF - Instruction

The IF...THEN...ELSIF statement (multiple conditional branching) is used to branch
a statement block depending on several conditions.
The ELSIF statement makes it possible to check several conditions in one IF
statement. If the first condition is not fulfilled, the next condition is checked, and so
on.

The basic structure of this instruction is as follows:

Picture 37 Code example IF...THEN...ELSIF statement

Structure program

Picture 38 Structure chart IF...THEN...ELSE statement

Example:

Picture 39 Example IF...THEN...ELSE statement

IF (*condition 1*) THEN
//statement 1

ELSIF (*condition 2*) THEN
//statement 2

ELSE
//statement 3

END_IF;

IF <condifion 1>

TRUE FALSE

statement 1

IF <condifion 2>

TRUE

statement2 statement3

FALSE

IF Temperatur > 100 THEN
Alarm := TRUE;

ELSIF Temperatur > 80 THEN
Warnung := TRUE;

ELSE
Alarm := FALSE;
Warnung := FALSE;

END_IF;

Program instructions - IF statement [ST / SCL]

47

In this example:

 The "Alarm" variable is set to "TRUE" if "Temperature > 100".

 The "Warning" variable is set to "TRUE" if the temperature is greater than 80
but less than or equal to 100.

 Otherwise, "Alarm" and "Warning" are set to "FALSE".

Program instructions - CASE structure [ST / SCL]

48

7.6 CASE structure [ST / SCL]

With the CASE statement (multiple branching / case differentiation), you process
one of several statement sequences, depending on the value of a numerical
expression.
The value of the expression must be an integer. When the instruction is executed,
the value of the expression is compared with the values of several constants. If the
value of the expression matches the value of a constant, the instructions that are
programmed directly after this constant are executed.

The constants can assume the following values:

 An integer (e.g. 3)
 A range of integers (e.g. 5...8)
 An enumeration of integers and ranges (e.g. 11, 17... 25)
 One bit sequence (0001)

Depending on the value of the expression, one of the following alternatives
(CASE1 ... CASEN) is selected and the corresponding statement sequence
(statement 1 to statement N) is executed. If none of the alternatives apply, the ELSE
branch is executed if it is available.

Picture 40 CASE instruction structure diagram

statement 1 statement 2 statement 3 statement 4 statement ... statement

CASE1: CASE2: CASE3: CASE4:

CASE …

ELSE

condifion

Program instructions - CASE structure [ST / SCL]

49

The syntax of a CASE instruction is as follows:

Picture 41 Syntax CASE statement

The CASE structure also supports the specification of value ranges and the
grouping of multiple values.

Picture 42 CASE statement with multiple selection

CASE (*condition*) OF
1: //CASE 1

//statement 1

2: //CASE 2
// statement 2

3: //CASE 3
// statement 3

4: //CASE 4
// statement 4

ELSE
// statement

END_IF;

CASE (*Variable*) OF
1..9: //Variable 1 - 9

// statement

10, 15, 19: //Variable 10, 15, 19
// statement

ELSE
// statement

END_IF;

Program instructions - CASE structure [ST / SCL]

50

In this example, the variable 'Age' is checked and the category is assigned
depending on the value range.

Picture 43 Example CASE

The CASE structure enables a clear and efficient method for selecting between
several alternatives based on the value of a variable. It improves the readability and
maintainability of the code, especially when many conditions need to be checked,
compared to the IF statement.
The option to specify value ranges and multiple values per case offers additional
flexibility.

CASE age OF
0..12: //Child

Kategorie := 'child';

13..19: //Teenager
Kategorie := 'teenager';

20..64: //Adult
Kategorie := 'adult';

65..100: //Senior
Kategorie := 'senior';

ELSE
Kategorie := 'invalid';

END_IF;

	7 Program instructions
	7.1 Flipflops
	7.1.1 Dominant resetting flip-flop
	7.1.2 Dominant setting flip-flop
	7.1.3 Exercise - Dominance behavior

	7.2 Flanks
	7.2.1 Recognize positive edge R_TRIG
	7.2.2 Recognize negative edge F_TRIG

	7.3 Times
	7.3.1 Switch-on delay TON
	7.3.2 Switch-off delay TOF
	7.3.3 Pulse TP
	7.3.4 Exercise - IEC time functions

	7.4 Counter
	7.4.1 Count forward CTU
	7.4.2 Count down CTD
	7.4.3 Counting forwards and backwards CTUD
	7.4.4 Exercise - IEC meter

	7.5 IF statement [ST / SCL]
	7.5.1 IF...THEN - Instruction
	7.5.2 IF...THEN...ELSE - statement
	7.5.3 IF...THEN...ELSIF - Instruction

	7.6 CASE structure [ST / SCL]

