

24V production line
Conversion GRAFCET to program code

S3
(I3)

1

3

4 2

S4
(I6)

S2
(I2)

S1
(I1)

Q1Q2

Q3

Q4

Q6

Q7

Q8

Q9

Q10

B1
(I4)

B2
(I5)

B3
(I7)

B4
(I8)

Pneumatic

Q5

Table of contents

Table of contents
9 Converting GRAFCET to program code ... 1

9.1 Functional description of the process chain ... 1

9.2 Implement GRAFCET sequence chain in FBD ... 3

9.2.1 Implementing steps and transitions in FBD ... 3

9.2.2 Implementing actions in FBD ... 6

9.3 Implementing the GRAFCET sequence chain in ST / SCL ... 9

9.3.1 Initializing the sequence chain ... 9

9.3.2 Structure of a step (CASE) ... 10

Conversion GRAFCET to program code - Functional description of the process
chain

1

9 Conversion GRAFCET to program code

9.1 Functional description of the process chain

A PLC program is now to be created from the GRAFCET given for an example
system. The basic procedure for converting a Grafcet into program code is
illustrated below using a simple step chain:

Picture 1 Exemplary GRAFCET chain

Conversion GRAFCET to program code - Functional description of the process
chain

2

Functional description

Step 1 (initial step)
Step 1 is the initial step.
As long as the system is in this step, actuator Q1 is activated by means of a
continuously acting action.
If the sensor delivers a B1 1 signal, the system jumps to the next step.

Step 2
Actuator Q2 is activated by saving ("TRUE").
If the sensor B2 delivers a 1 signal, the system jumps to the next step.

Step 3
As long as the system is in this step, actuator Q3 is activated by means of a
continuously acting action with condition. In order for the actuator to be
controlled with the value "TRUE", sensor B5 must also supply a 1 signal in
addition to the active step.
If sensor B3 delivers a 1 signal, the system jumps to the next step.

Step 4
Actuator Q2 is reset ("FALSE").
If the sensor B4 delivers a 1 signal, the system jumps back to the initial step.

Conversion GRAFCET to program code - Implement GRAFCET process chain in
FBD

3

9.2 Implement GRAFCET process chain in FBD

In this section, we will implement the sequence chain planned in GRAFCET in the
FBD programming language.

9.2.1 Implement steps and transitions in FBD

The reset-dominant flip-flop is the central element in the implementation of the
GRAFCET sequence chain in FBD. An active step is represented by an activated
flip-flop. A step is activated via the set input and can therefore be regarded as part
of the preceding transition. An active step is exited via the reset input and is
therefore part of the subsequent transition.
A separate step marker representing the activated step is connected as a memory
for the flip-flop.
Global flags, variables from global data blocks or local variables from the static area
of the block interface can be used as variables for the step flags.

Picture 2 Flip-flop with step marker

Initial step
Step 1 is the initial step, which must be activated when the chain is initialized (Init).
The step is also activated if the chain is in the last step (SR04) and the subsequent
transition (B4) is fulfilled.

Picture 3 Programming initial step

The step must be reset if the following step (SR02) is active.

S

R1 Q

SR
SR01

step flag

&
SR04

B4

>=1
Init S

R1 Q

SR

SR02

SR01

Conversion GRAFCET to program code - Implement GRAFCET process chain in
FBD

4

Standard step
All further steps are set if the previous step and the corresponding transition are
fulfilled. They are reset when the subsequent step is active or the chain is initialized.

Picture 4 Programming step

The last step is followed by a jump to the first step of the chain, so the last step is
reset with the first step, as this is the following step.

SR01

&
B1 S

R1 Q

SR
SR02

>=1
SR03

Init

Conversion GRAFCET to program code - Implement GRAFCET process chain in
FBD

5

This results in the following step chain for the GRAFCET shown at the
beginning:

Picture 5 Programming step chain

Conversion GRAFCET to program code - Implement GRAFCET process chain in
FBD

6

9.2.2 Implement actions in FUP

Due to functional structuring aspects, the actions in the respective steps of the
sequence chain can be programmed either in a separate control module or
directly in the networks immediately after the chain in the same module.

Programming in a separate control module
One option is to program the actions of the steps in a separate control module.
This method has the advantage that the control logic of the step chain and the
execution of the actions are clearly separated from each other. This increases the
clarity of the program, which is particularly advantageous for complex control
systems. This separation also makes it easier to maintain and expand the program,
as changes to the control logic or actions can be made independently of each
other.

In this approach, the step chain is implemented in the main module. When a step
becomes active, a signal is sent to the control module, which then executes the
corresponding actions. The step flags are usually used as signals for the exchange.
This structure enables modular programming in which each module has a clearly
defined task.

Programming in the networks directly after the step chain
An alternative method is to program the actions directly in the networks
immediately after the step chain in the same block. This approach has the
advantage that the entire logic is concentrated in one place, which makes it easier
to trace the execution of the program. This can be a more efficient and faster
solution, especially for smaller and less complex projects.

Here, the actions are programmed directly in the networks that follow the
corresponding steps in the step chain. This method can optimize the program
runtime, as no additional block calls are required, and the structure of the program
remains compact.

Conversion GRAFCET to program code - Implement GRAFCET process chain in
FBD

7

Continuous action in FBD:
Default:

The action is executed for as long as the step is active.

Implementation:
The corresponding step marker is written directly to the output via an
assignment.

Picture 6 Continuous allocation

Continuous allocation with additional allocation condition:
Default:

The action is executed as long as the step is active and the assignment
condition is fulfilled.

Implementation:
The corresponding step flag is logically linked to the assignment condition
and the result of the link is assigned to the output.

Picture 7 Continuous assignment with condition

Saving action:
Default:

The saved action remains active over several steps.

Implementation:
The corresponding step flags for setting and resetting the action are
connected to a flip-flop. The flip-flop has a saving effect on the output.

Picture 8 Storing action

When the chain is initialized, the action may remain set as step 4 (SR04) has not
been activated. To prevent this, the variable for the initialization request (Init) can
also be connected to the reset input using an OR link.

Conversion GRAFCET to program code - Implement GRAFCET process chain in
FBD

8

Conversion GRAFCET to program code - Implement GRAFCET process chain in ST /
SCL

9

9.3 Implement GRAFCET process chain in ST / SCL

In this section, we will implement the sequence chain planned in GRAFCET in the
ST / SCL programming language.

It is recommended to use a CASE structure to map the individual steps of the
GRAFCET. To do this, an index variable with an integer data type (e.g. INT) must first
be defined. This is the count variable that represents the current step.

Picture 9 CASE structure

9.3.1 Initializing the process chain

Step 1 is the initial step, which must be activated when the chain is initialized (Init).
For this purpose, an IF statement must be placed before the CASE structure, which
resets the index variable (step number) to 1 when initialization is requested.

Picture 10 Initialization

Conversion GRAFCET to program code - Implement GRAFCET process chain in ST /
SCL

10

9.3.2 Structure of a step (CASE)

Each step (CASE) is structured according to the following scheme:
First, the actions that are to be carried out in the step are implemented. This is
followed by an IF statement, which represents the transition and sets the index
variable of the step chain to the next step if the transition conditions are met.

Picture 11 Structure step

Depending on the planned action, these must be implemented differently:

Continuous allocation:
Default

The action is executed for as long as the step is active.
Implementation

By assigning the signal state "TRUE" to the variable, a saving behavior is
achieved. However, this is not desired at this point. Therefore, the action
must be reset when leaving the step, which follows the fulfillment of the
transition condition.

Picture 12 Continuous assignment with condition

Conversion GRAFCET to program code - Implement GRAFCET process chain in ST /
SCL

11

Continuous allocation with additional allocation condition:
Default

The action is executed as long as the step is active and the assignment
condition is fulfilled.

Implementation
The additional assignment condition can be assigned directly to the action.
As with continuous assignment, the corresponding action must also be reset
when leaving the step.

Picture 13 Continuous assignment with condition

Saving action:
Default

With stored actions, the action is executed over several steps.
Implementation

In principle, all actions are actions with a saving effect due to the direct
assignment of the signal states. If this behavior is desired, the action must
not be reset in the IF statement of the transition, but in the corresponding
step.

Picture 14 Storing action

3: //step 3
//action
Q3 := B5;

//transition
IF B3 THEN

Q3 := false;
stepnumber := 4;

END_IF;

4: //step 4
//action

set action in step,
depending on the signal of
the assignment condition

reset action in step

Conversion GRAFCET to program code - Implement GRAFCET process chain in ST /
SCL

12

This results in the following step chain for the GRAFCET shown at the
beginning:

Picture 15 Programming step chain

	9 Conversion GRAFCET to program code
	9.1 Functional description of the process chain
	9.2 Implement GRAFCET process chain in FBD
	9.2.1 Implement steps and transitions in FBD
	9.2.2 Implement actions in FUP

	9.3 Implement GRAFCET process chain in ST / SCL
	9.3.1 Initializing the process chain
	9.3.2 Structure of a step (CASE)

