
Page 1 from 
14

Micropython programming reference for the 
fischertechnik RX controller

MICROPYTHON PROGRAMMING REFERENCE FOR THE 
FISCHERTECHNIK RX CONTROLLER

Importing libraries

These libraries are required for programming models with the RX Controller.

1. import asyncio:

o What it is: asyncio is a Python library that provides infrastructure for 
writing parallel executable code.

o What is it good for: The library enables the simultaneous and efficient 
execution of multiple tasks (such as reading sensors or activating 
actuators). It is useful in scenarios where it is necessary to wait for different 
input/output operations (such as the response of a sensor) without blocking 
the execution of other tasks.

2. import fischertechnik.factories as rx_factory:

o What is this?: This line imports the factories module from the 
fischertechnik library and assigns it to the alias rx_factory to facilitate 
referencing.

o What is this good for: The fischertechnik.factories library provides the 
necessary functions to create and manage the different types of sensors 
and actuators compatible with the RX Controller.

3. from fischertechnik.logging import log as print:

o What is this?: This line imports the log function from the logging 
module of fischertechnik and assigns it to the alias print.

o What is this good for: This allows print to be used to log debugging or 
information messages, similar to the print() function in Python, but 
specifically for the Fischertechnik library with additional logging functions.



page 2 of 14

Initialization of the components

After the imports, the components are initialized using various functions. These 
initializations are crucial to configure the system correctly and to ensure that each 
sensor and actuator is ready for operation. Without these initializations, the program 
would not be able to communicate with the hardware components and operations such 
as reading sensors or activating actuators would not be possible.

1. Initialization of the factories:

o In order to be able to use sensors and actuators, the corresponding 
factories must first be initialized, which prepare the system to create 
objects that represent the hardware components.

rx_factory.init_controller_factory() 
rx_factory.init_input_factory() 
rx_factory.init_output_factory() 
rx_factory.init_motor_factory() 
rx_factory.init_i2c_factory()

o rx_factory.init_controller_factory(): Initializes the controller required to 
manage communication with the control electronics.

o rx_factory.init_input_factory(): Initialization that enables the 
creation and management of sensors (inputs).

o rx_factory.init_output_factory(): Initialization of the outputs, which 
enables the creation and management of actuators (outputs).

o rx_factory.init_motor_factory(): Initializes the motors and specializes in 
their management.

o rx_factory.init_i2c_factory(): Initializes I2C devices that are used to 
manage sensors or actuators that are connected via the I2C protocol.

2. Initialization of sensors and components

The fischertechnik RX Controller enables the connection and disconnection of various 
sensors and actuators to different ports and thus offers great flexibility in the design and 
construction of projects. The following describes the types of sensors that can be 
connected, how they are configured and initialized, and what they are used for.

• photoresistor

o Input port: Each digital input port.

o Initialization:
RX_I5_photo_resistor = rx_factory.input_factory.create_photo_resistor(controller, 5)



page 3 of 14

o Configuration: This sensor measures the light intensity. Its resistance varies 
depending on the amount of light; more light, less resistance and less light, 
more resistance.

o Use: Can be used to detect changes in lighting conditions, e.g. to 
automatically switch on a lamp when it gets dark.

• Ultrasonic sensor

o Input port: Each digital input port.

o Initialization:
RX_I7_ultrasonic_distance_meter = rx_factory.input_factory.create_ultrasonic_distance_meter(controller, 7)

o Configuration: This sensor uses sound waves to measure the distance to an 
object. The distance is determined by measuring the time it takes for the 
sound wave to reach the object and return.

o Usage: Used in applications such as collision avoidance for robots or to detect 
the presence of objects in an area.

• Color sensor

o Input port: Each digital input port.

o Initialization:
RX_I6_color_sensor = rx_factory.input_factory.create_color_sensor(controller, 6)

o Configuration: This sensor detects the color of an object in front of it by 
measuring the intensity of the reflected light in the RGB color channels (red, 
green, blue).

o Application: Useful in applications that require color detection, such as 
sorting processes or line detection in robotics.

• NTC resistor

o Input port: Each digital input port.

o Initialization:
RX_I1_ntc_resistor = rx_factory.input_factory.create_ntc_resistor(controller, 1)

o Configuration: This is a temperature sensor that uses an NTC (Negative 
Temperature Coefficient) thermistor whose resistance decreases as the 
temperature rises.

o Use: Used to measure the ambient temperature or the temperature of 
objects.

• IR track sensor



page 4 of 14

o Input port: Each digital input port.

o Initialization:
RX_I3_trail_follower = rx_factory.input_factory.create_trail_follower(controller, 3) 
RX_I4_trail_follower = rx_factory.input_factory.create_trail_follower(controller, 4)

o Configuration: Used to follow a line on a surface, often using infrared light to 
detect the contrast between the line and the background. Note that a single 
sensor must be connected to two inputs.

o Application: Ideal for line-following robots that have to follow a predefined 
path.

• Phototransistor

o Input port: Each digital input port.

o Initialization:
RX_I4_photo_transistor = rx_factory.input_factory.create_photo_transistor(controller, 4)

o Configuration: This sensor is light-sensitive and enables the detection of 
light intensity or the presence of light in a specific area.

o Use: Can be used to detect changes in ambient lighting or 
the presence of light in safety applications.

• Mini push-button

o Input port: Each digital input port.

o Initialization:
RX_I8_mini_switch = rx_factory.input_factory.create_mini_switch(controller, 8)

o Configuration: This is a simple switch that can detect whether it is open or 
closed.

o Application: Can be used as a limit switch to detect the presence or 
absence of an object or as a control button.

• Reed contact

o Input port: Each digital input port.

o Initialization:
RX_I2_reed_switch = rx_factory.input_factory.create_mini_switch(controller, 2)

o Configuration: A magnetic sensor that is activated when a magnetic field is 
present and indicates whether the field is present or absent.

o Application: Often used in security systems or to detect the position of 
moving objects.



page 5 of 14

• I2C sensors: Sensors connected via the I2C protocol require special initialization, 
as this protocol enables communication with multiple devices via a single data bus.

o RGB gas sensor

▪ I2C port: Can be connected to any available I2C port.
RX_I2C_1_gesture_sensor = rx_factory.i2c_factory.create_gesture_sensor(controller, 1)

▪ Configuration: This sensor can detect movements such as waving 
or hand movements. It is also able to measure distances, light 
intensity and its composition.

▪ Application: Used for contactless control of devices, such as in 
user interfaces or robot controls.

o Environmental sensor

▪ I2C port: Can be connected to any available I2C port.

▪ Initialization:
RX_I2C_2_environment_sensor = rx_factory.i2c_factory.create_environment_sensor(controller, 2)

▪ Configuration: Measures environmental parameters such as 
temperature, humidity, air quality and air pressure.

▪ Application: Ideal for monitoring the ambient conditions in a specific 
area.

o Combination sensor 10-pole

▪ I2C port: Can be connected to any available I2C port.

▪ Initialization:
RX_I2C_3_combined_sensor = rx_factory.i2c_factory.create_combined_sensor(controller, 3)

▪ Configuration: Includes several sensors such as accelerometer, 
gyroscope and magnetometer, which enable the detection of 
movement, orientation and magnetic field.

▪ Usage: Used in applications for motion detection or stabilization.

Summary: For each sensor type, the correct port must be selected based on the 
application configuration and the sensor initialized using the factories provided. This initial 
configuration is essential to ensure that the sensors function correctly and provide 
accurate data. In the next part, we will cover how to use these sensors and interpret their 
data.

Detailed description of the information that can be obtained from digital and 
analog sensors in the Fischertechnik RX Controller



page 6 of 14

The sensors connected to the fischertechnik RX Controller can be divided into digital 
and analog sensors depending on the type of signal generated and the information 
provided. The following describes what information can be obtained from these sensors 
and how this data can be used.

Digital sensors: Digital sensors provide discrete values, usually "on" or "off" (1 or 0), 
"open" or "closed" or some other form of binary value.

• Mini push-button

o Information gained:

▪ is_open(): Returns True if the switch is open, False if it is 
closed.

▪ is_closed(): Returns True if the switch is closed, False if it is 
open.

▪ get_state(): Returns the current state of the switch (open or 
closed).

o Use: Can be used to detect the presence of an object or as a 
control button in a system, e.g. to start or stop a process.

• Reed contact

o Information gained:

▪ is_open(): Returns True if the switch is open, False if it is 
closed.

▪ is_closed(): Returns True if the switch is closed, False if it is 
open.

▪ get_state(): Returns the current state of the switch (open or 
closed).

o Uses: Commonly used to detect the presence of a magnetic field, 
useful in security applications or for positioning.

• IR track sensor

o Information gained:

▪ get_state(): Returns a value indicating whether the sensor 
detects the line (0 for not detected, 1 for detected).

o Application: Important for line-following robots that have to follow a 
predefined line on a surface.



page 7 of 14

• Photo Transistor

o Information gained:

▪ is_bright(): Returns True if the detected light is high.

▪ is_dark(): Returns True if the detected light is low.

▪ get_state(): Returns the current state based on the 
detected light (bright or dark).

o Use: Can be used to detect the presence of light or darkness in an 
area, useful in day/night detection or object detection.

Analog sensors: Analog sensors provide continuous values that can vary within a 
certain range and represent physical quantities such as light, temperature, distance, etc.

• photoresistor

o Information gained:

▪ get_resistance(): Returns the resistance value, which is 
inversely proportional to the light intensity (more light, less 
resistance).

o Application: Used to measure ambient light intensity, e.g. for the 
automatic control of lighting systems.

• Ultrasonic sensor

o Information gained:

▪ get_distance(): Returns the distance to an object in units from 0 
to 1024, where 0 is the minimum distance and 1024 is the 
maximum distance.

o Uses: Used to measure distance to objects, useful in applications 
such as obstacle avoidance for robots.

• Color sensor

o Information gained:

▪ get_voltage(): Returns the voltage value that correlates 
with the intensity of the detected RGB color components.

o Use: Enables the color recognition of objects, useful for sorting 
processes or the recognition of colored lines.



Page 8 from 
14

• NTC resistor

o Information gained:

▪ get_resistance(): Returns the resistance of the thermistor, 
which varies inversely to the temperature (more temperature, 
less resistance).

o Application: Used to measure the ambient temperature or objects, 
suitable for thermal monitoring applications.

Summary: Digital and analog sensors provide a variety of data that can be used to 
interact with the environment, control automated systems or collect data for analysis. 
Digital sensors provide binary values that are useful for simple control decisions, while 
analog sensors provide continuous values that enable precise measurement of physical 
quantities. The correct interpretation of this data is crucial for the efficient functioning of 
any system based on the fischertechnik RX Controller.

RGB gas sensor

The RGB gesture sensor is an advanced device that combines several functions in a 
single chip. It can recognize gestures and measure ambient light, RGB light (red, green, 
blue) and proximity. Below you will find a detailed description of the sensor's 
capabilities, the available functions and the values that can be retrieved.

Initialization of the sensor: In order to use the RGB gas sensor, it must first be 
initialized correctly. This is done by creating an instance of the sensor via the I2C 
factory.
RX_I2C_1_gesture_sensor = rx_factory.i2c_factory.create_gesture_sensor(controller, 1)

This code creates the object RX_I2C_1_gesture_sensor, which is assigned to I2C port 
1. After initialization, you can start configuring the various functions and retrieve data 
from the sensor.

Gesture recognition: The RGB gesture sensor can recognize various hand 
movements such as up, down, left and right. This function is useful for controlling 
devices without physical contact.

• Activation of gesture recognition:
RX_I2C_1_gesture_sensor.enable_gesture()

• Recall recognized gestures:
gesture = RX_I2C_1_gesture_sensor.get_gesture() 
print(gesture)

• Deactivation of gesture recognition:



page 9 from 14

RX_I2C_1_gesture_sensor.disable_gesture()

Measurement of RGB light: The sensor can detect the intensity of the light in the RGB 
color components and thus provide an accurate representation of the ambient light color.

• Activation of the light sensor:
RX_I2C_1_gesture_sensor.enable_light()

• Retrieve RGB data:
rgb_values = RX_I2C_1_gesture_sensor.get_rgb()
print(f "Red: {rgb_values[0]}, Green: {rgb_values[1]}, Blue: {rgb_values[2]}")

o get_rgb(): Returns a tuple containing the intensity values for the red, 
green and blue components. Each value can normally vary from 0 to 255, 
depending on the sensor setting and lighting conditions.

• Retrieve HEX values:
hex_value = RX_I2C_1_gesture_sensor.get_hex() 
print(f "Color in HEX format: {hex_value}")

o get_hex(): Returns a HEX representation of the detected color, useful for 
applications that require a color identifier.

• Retrieve HSV values:
hsv_values = RX_I2C_1_gesture_sensor.get_hsv()
print(f "Hue: {hsv_values[0]}, saturation: {hsv_values[1]}, value: {hsv_values[2]}")

o get_hsv(): Returns the values for hue, saturation and value 
(brightness), which are useful for color description in graphical and 
design applications.

• Deactivation of the light sensor:
RX_I2C_1_gesture_sensor.disable_light()

Ambient light measurement: In addition to RGB measurements, the sensor can provide 
an ambient light measurement, which is useful for determining the general lighting 
conditions.

• Calling up the ambient light:
ambient_light = RX_I2C_1_gesture_sensor.get_ambient() print(f 
"Ambient light: {ambient_light}")

o get_ambient(): Returns a value that represents the intensity of the 
ambient light. This value can be used to automatically adjust the 
brightness of displays or lighting.

Proximity detection: The RGB gas sensor can detect the proximity of objects based on 
the amount of reflected infrared light.

• Activation of proximity detection:
RX_I2C_1_gesture_sensor.enable_proximity()

• Retrieve approximate data:
proximity = RX_I2C_1_gesture_sensor.get_proximity() print(f 
"Proximity: {proximity}")



page 10 from 14

o get_proximity(): Returns a value between 0 and 255, where 0 means 
that there is no object nearby and 255 means that the object is very 
close to the sensor.

• Deactivation of proximity detection:
RX_I2C_1_gesture_sensor.disable_proximity()

Summary: The RGB gesture sensor is a versatile device that combines gesture detection, 
RGB light and ambient light measurement and proximity detection in a single chip. This 
makes it ideal for applications with advanced user interfaces, automatic light adaptation 
and security systems. The sensor provides a rich interface to interact with the environment 
through detailed and precise data.

Environmental sensor

The BME680 is an integrated environmental sensor that can measure various parameters 
such as temperature, relative humidity, air pressure and air quality. These features make it 
ideal for environmental monitoring applications, HVAC systems, weather stations and 
other IoT (Internet of Things) devices. The capabilities of the sensor, its initialization and 
the acquisition of the various data are described below.

Initializing the environmental sensor: In order to use the environmental sensor, it 
must first be initialized correctly. This is done by creating an instance of the sensor via 
the I2C factory.
RX_I2C_2_environment_sensor = rx_factory.i2c_factory.create_environment_sensor(controller, 2)

This code creates the object RX_I2C_2_environment_sensor, which is assigned to I2C 
port 2. After initialization, the environmental data provided by the sensor can be retrieved.

Functions of the sensor

• Temperature measurement

o Retrieve the temperature:
temperature = RX_I2C_2_environment_sensor.get_temperature() print(f 
"Temperature: {temperature} °C")

▪ get_temperature(): Returns the ambient temperature in degrees 
Celsius (°C). This information is useful for monitoring the indoor or 
outdoor climate and for applications that require precise 
temperature control.

• Measurement of relative humidity

o Retrieve the relative humidity:



page 11 from 14

humidity = RX_I2C_2_environment_sensor.get_humidity() print(f "Relative 
humidity: {humidity} %")

▪ get_humidity(): Returns the relative humidity in percent (%). This 
measurement is important for controlling air quality, avoiding 
excessive dryness or high humidity and for comfort and health 
applications.

• Air pressure measurement

o Retrieve the air pressure:
pressure = RX_I2C_2_environment_sensor.get_pressure() 
print(f "Air pressure: {pressure} hPa")

▪ get_pressure(): Returns the air pressure in hectopascals (hPa). 
This data is essential in meteorological applications as it helps to 
predict weather changes such as climate and storms.

• Air quality measurement (IAQ): The environmental sensor can measure 
indoor air quality (IAQ) by detecting volatile organic compounds (VOCs) in the 
air.

o Retrieve the air quality as a number:
iaq_number = RX_I2C_2_environment_sensor.get_indoor_air_quality_as_number() print(f "Air 
quality (IAQ): {iaq_number}")

▪ get_indoor_air_quality_as_number(): Returns a number 
representing the indoor air quality. This value can be interpreted to 
determine the overall air quality and take action if improvement is 
required.

o Retrieve the air quality as text:
iaq_text = RX_I2C_2_environment_sensor.get_indoor_air_quality_as_text() print(f "Air 
quality: {iaq_text}")

▪ get_indoor_air_quality_as_text(): Provides a textual description 
of the air quality (e.g. "Good", "Moderate", "Poor", etc.), which 
makes it easier for end users to interpret the results.

Calibration of the sensor: The environmental sensor may require a calibration phase to 
ensure the accuracy of the air quality measurements.

• Calibration of the sensor:
RX_I2C_2_environment_sensor.calibrate()

o calibrate(): This command starts the calibration of the sensor to 
ensure that the air quality measurements are accurate.

• Check the need for calibration:
needs_calibration = RX_I2C_2_environment_sensor.needs_calibration() 
if needs_calibration:

print("The sensor requires calibration.")



page 12 from 14

o needs_calibration(): Returns a boolean value indicating whether the 
sensor needs calibration.

Summary: The environmental sensor provides a comprehensive range of environmental 
measurements, including temperature, humidity, air pressure and air quality. This data is 
critical for a variety of applications, from environmental monitoring to smart HVAC 
systems. The ability to measure air quality is particularly important in environments 
where indoor air quality can affect health and well-being.

Combination sensor

The combination sensor, which includes an accelerometer, a gyroscope and a 
magnetometer. This device provides measurements of motion, orientation and magnetic 
field and is ideal for applications in robotics, motion detection, device stabilization and 
navigation. Below you will find a detailed description of the functions, initialization and 
data acquisition of this sensor.

Initializing the combination sensor To use the combination sensor, all its components 
(accelerometer, magnetometer, gyroscope) must be initialized with the desired settings.
controller.RX_I2C_3_combined_sensor.init_accelerometer(2, 8, False) 
controller.RX_I2C_3_combined_sensor.init_magnetometer(25) 
controller.RX_I2C_3_combined_sensor.init_gyrometer(250, 12, False)

• Accelerometer:

o init_accelerometer(range, bandwidth, high_res):

▪ range: Defines the measuring range of the acceleration. In this 
case, 2 specifies a range of ±2g.

▪ bandwidth: Defines the bandwidth of the output filter. Here 8 
specifies the bandwidth in Hz.

▪ high_res: A Boolean value that specifies whether 
the high-resolution mode is used.

• Magnetometer:

o init_magnetometer(data_rate):

▪ data_rate: Defines the data rate (in Hz) for the magnetometer. 25 
specifies a data rate of 25 Hz.

• Gyroscope:

o init_gyrometer(range, bandwidth, high_res):



page 13 from 14

▪ range: Defines the measuring range of the rotation speed. Here 
250 specifies a range of ±250 °/s.

▪ bandwidth: Defines the bandwidth of the output filter. 12 specifies 
the bandwidth in Hz.

▪ high_res: A Boolean value that specifies whether 
the high-resolution mode is used.

Data acquisition of the combination sensor

1. Accelerometer: The accelerometer measures linear acceleration in the three 
directions (x, y, z), which is useful for determining relative position, speed and 
motion detection.

o Calling up the acceleration:
acc_x = controller.RX_I2C_3_combined_sensor.get_acceleration_x() 
acc_y = controller.RX_I2C_3_combined_sensor.get_acceleration_y() 
acc_z = controller.RX_I2C_3_combined_sensor.get_acceleration_z() 
print(f "Acceleration - X: {acc_x} g, Y: {acc_y} g, Z: {acc_z} g")

▪ get_acceleration_x(): Returns the acceleration on the x-axis in 
units of g.

▪ get_acceleration_y(): Returns the acceleration on the Y-axis in 
units of g.

▪ get_acceleration_z(): Returns the acceleration on the Z-axis in 
units of g.

2. Magnetometer: The magnetometer measures the strength of the magnetic field 
in the three directions and helps to determine the orientation in relation to the 
earth's magnetic field.

o Retrieve the magnetic field:
mag_x = controller.RX_I2C_3_combined_sensor.get_magnetic_field_x() 
mag_y = controller.RX_I2C_3_combined_sensor.get_magnetic_field_y() 
mag_z = controller.RX_I2C_3_combined_sensor.get_magnetic_field_z() 
print(f "Magnetic field - X: {mag_x} μT, Y: {mag_y} μT, Z: {mag_z} μT")

▪ get_magnetic_field_x(): Returns the strength of the magnetic field 
on the X-
axis in microtesla (μT).

▪ get_magnetic_field_y(): Returns the strength of the magnetic field 
on the Y-
axis in microtesla (μT).

▪ get_magnetic_field_z(): Returns the strength of the magnetic field 
on the Z-
axis in microtesla (μT).

3. Gyroscope: The gyroscope measures the rotational speed in the three 
directions and provides essential data for controlling orientation and 
stabilization.



page 14 from 14

o Retrieve the rotation speed:
rot_x = controller.RX_I2C_3_combined_sensor.get_rotation_x() 
rot_y = controller.RX_I2C_3_combined_sensor.get_rotation_y() 
rot_z = controller.RX_I2C_3_combined_sensor.get_rotation_z()
print(f "Rotation speed - X: {rot_x} °/s, Y: {rot_y} °/s, Z: {red_z} °/s")

▪ get_rotation_x(): Returns the rotation speed on the X-axis in 
degrees per second (°/s).

▪ get_rotation_y(): Returns the rotation speed on the Y-axis in 
degrees per second (°/s).

▪ get_rotation_z(): Returns the rotation speed on the Z axis in 
degrees per second (°/s).

Summary: The combination sensor provides a comprehensive solution for measuring 
motion, orientation and magnetic field. With capabilities to measure acceleration, 
magnetic field and rotational speed, this sensor is extremely useful for applications in 
robotics, navigation, device stabilization and other motion control systems. Each of the 
measurements captured provides a detailed understanding of the connected device's 
state and motion, facilitating a wide range of applications from fall detection to position 
and orientation sensing.


