

Omniwheels with lane and gesture sensor

With this model, you will learn the basics of
programming. The use of the gesture sensor
(color recognition) and the interaction with
the track sensor is reinforced here. A new addition is controlling the model using a
control panel you have created yourself.

Actuators and technical accessories installed in the model.

Mini motor Gearbox Gesture sensor Omniwheel
wheel

IR track sensor

You can find an explanation of the components on the start page.

The "Omniwheels with track and gesture sensor" model is divided into 5
programming tasks:

Task 1

Omniwheels_track_
gesture_sensor_1.ft

Programming level 3
The model travels along the black line on
the parkour. When it leaves the line, the IR
track sensor adjusts the direction of travel
so that the model always follows the black
guide line.

Hyperlink to
the
Task 1

Task 2

Omniwheels_track_ge

sture_sensor_2.ft

Programming level 3
The model should first search for the black
guide line and then follow it as in task 1.

Hyperlink to
task 2

Task 1

You already know the first task from the "Advanced 2-wheeled robot" model. The
only difference is that you are now working with four motors.

Determining the wheels: M1 = front left wheel, M2 = front right wheel, M3 = rear left
wheel and M4 = rear right wheel.

Start the program "Advanced_2_wheeled_robot_2".

As you can take over most of the functions, you must first save or name the
program under the new name: Omniwheels_track_ gesture_sensor_1

Extend the controller configuration to 4 motors and add the gesture
sensor to the I2C interface.

In the main program, you must then expand all functions relating to motor
movements with 2 additional motors.

Change the functions using the following illustrations:

2-wheel move_fw 4-wheel move_fw

Task 3

Omniwheels_track_ge

sture_sensor_3.ft

Programming level 3
The model is to be moved using gesture
control. To do this, the hand movements
must be evaluated.

Hyperlink to
task 3

Task 4

Omniwheels_track_ge

sture_sensor_4.ft

As in the previous tasks, the model follows
the black guideline. If it hits a color field,
the color is determined and an action is
executed, e.g. blue - park

Hyperlink to

task 4

The model should drive along the black
line on the parkour. The IR track sensor is
used to readjust the direction of travel
when leaving the line so that the model
always follows the black guide line. You
can use the "follow_line" function here.
You do not need to make any changes.

You can delete the function "find_line", this is only needed in task 2.

2-wheel move_bw 4-wheel move_bw

2-wheel turn_right 4-wheel turn_right

2-wheel turn_left 4-wheel turn_left

2-wheel stop 4-wheel stop

In the program start, you must
first duplicate the entire "repeat"
loop from the "follow_line" block
and insert it into "program start".
Change the "speed" value to "300".

Finally, you must insert the "stop"
block after the loop. This completes the
definition of task 1.

Then test the program. If everything works, you can program the 2nd task.

Task 2

Important: As you will need parts of task 1, save them on your computer at
Omniwheels_track_ gesture_sensor_2 .

First copy the "Advanced_2_wheeled_robot_2" program the function

This means that all functions are defined and you can integrate them into your
program start.

As required in the task, the model
should first search for a line and
then move along it, i.e. the function
is placed before the loop
command.

The program is now complete and you can test it. Save it again.

Task 3

For this task, you will need the "move_right" and "move_left" functions in addition to
the functions already defined. Simply duplicate the "move_bw" function twice and
change the parameters.

We create the main program together. As
you probably remember, you have to insert
the loop "repeat permanently ...".

Before you start querying the values of the gesture sensor, you must create the
variable "gesture". The "speed" variable is already defined.

Insert the command sequence "set ... on"
and "get gesture sensor ...".

A total of 6 movements determined by
the gesture sensor should be evaluated
and trigger an action by the model. To do

this, insert "6" times the command "if make".

The first query should determine
whether the sensor value is "1". If
this is the case, the model should
turn "700 ms" to the left. To do
this, insert the command "=". The
command "a number" is added
to the first docking point and the

variable "gesture" to the second docking point. This is followed by the command
"wait ..." change this to "ms" and the value "700".

4-wheel move_right 4-wheel move_left

Define the other queries. Duplicate the first
query and insert it in the respective places.
Then change the parameters.

Finally,
you need to define the empty spaces of "mache".
To do this, you can duplicate the "wait" command
and insert it in the individual places. For the value
"2", insert "turn_right", for "3" "move_fw", for "4"
"move_bw", for "5" "move_right" and for "6"
"move_left". The "speed" parameters must be set
to "300". At the end of the loop, insert the "stop"
function.

The program is now complete and you can test it. Save the program under
Omniwheels_track_ gesture_sensor_3

Task 4

Now you come to the last task.

Important: In order for the gesture sensor to recognize the
coloured areas, you must reposition the gesture sensor as
shown in the assembly instructions.

The aim here is for the model to follow the guide line along the parkour again.

If a colored area is reached, an event should be executed.

• If the sensor hits "yellow", the model moves faster.
• If the sensor hits "red", the model performs dance

movements.
• If the sensor detects "blue", the parking function is activated.
• If the sensor hits "green", the model slows down.

For this program, you will create new functions and the main program except for a
few functions for moving the model. To do this, you can save the previous program
under the new name: Omniwheels_track_ gesture_sensor_4

Start by deleting all commands from the "Program start", except for the command
to initialize the gesture sensor.

A new command "output" is added here from the
"Processing" - "Text" block. You can include a
text to be displayed in the console in the free

space, e.g. "Sensor activated" in relation
to the program.

In the course of the overall program, you will
incorporate further text editions.

Define the already created variable "speed"
with the value "200". Then insert a "wait"

command of "2" seconds.

In the next step, create a "Calibrate"
function. Before you define the program
part, create the following variables:

"reference_ambient_light", "RGB", "Red",
"Green", "Blue", "correct_r", "correct_b",
"current_g".

The first command
measures the reference

value of the ambient light provided by the sensor. To do this, first
insert the variable "set reference_ambient_light". The variable is set
to the output value of the gesture sensor for the "ambient light". You can display the
value in the console.

Then add the command
"set RGB to" and the
command "get gesture
sensor ... RGB" in the free

space. You can then display the values determined for the three
colors in the console.

The next 3 commands are assignments from the command "in the list ...
take" from the "Processing" - "Data structure" block. The first element
in the list (RGB) is the value for "Red". This is assigned to the variable

"Red".

The second element in the list is the value for "Green". This
is assigned to the variable "Green". The third element in the

list is the value for "Blue". This is assigned to the variable "Blue".

First insert the command "set ... to" three
times, change to "Red", "Green" and "Blue".
Then insert the variable "RGB". Finally, the
command "A number" follows three more
times. Change the first value to "1", the
second value to "2" and the third value to "3".

Then add the three color values to the
variable "total_color". You can display
the calculated value in the console via
"output ...".

In the next step, set the variables "Red", "Green" and "Blue" to the value of the gesture
sensor for the colors "RGB red", "RGB green" and "RGB blue". Multiply this value by
"100" and divide it by the value "reference_ambient _light".

For a perfect white color, the three values should be equal, i.e. the total light value,
1/3 (or 33.3%) of each color.

Once you have calculated the percentage
of each channel, divide the theoretical
33.33% of each channel by the average
light value to obtain a correction factor for
the light in the room. The calculations are
assigned to the variables "correct_r",
"correct_g" and "correct_b".

If the light is predominantly blue, the proportion of this channel is higher than 33.3
and the correction value is less than one. In contrast, the other channels are lower
than 33.3 and their correction values are higher than one. What needs to be
considered?

The model always starts in a white area. The correction factor significantly reduces
the effects of the light color and the sensor readings on the colors.

Add the "Calibrate" function to the program start. You
can display the text "Sensor calibrated" in the console.

Define two further variables "last color" and "last
correction". Insert both variables after "Calibrate" and set
them to "White" and "right".

Next, the model should find the black
line via the IR sensor. To do this, first
insert the "if do" command. For "if",
insert the multiple command to
determine the IR logic. Then, in the
console, state that the line is being
searched for.

Ok, that's done too. Now you need the "find_line" function as the next program step.
To practise programming, simply create the function using the illustration.

Insert the "find_line" function into
the program start. When you start
the program, the model searches for
the black line. The function is
displayed in the console.

This defines the header of the program start
and you can add a loop as a further step.
Create the variables "color", "time",
"red_sensor", "green_sensor", "blue_sensor"
and "ambient_light" as well as the function
"follow_line_with_color_trigger".

Important: The other program displays of the program start refer to the loop content.

The "Follow_line_with_color_trigger" function is inserted
into the loop first. This consists of the adjacent program
lines. But beware: In this function you still need the
"Follow_line" function. You must therefore create both
functions.

In the "if do" query, you still need
to query a value assignment from
the "Color_recognise" function. If
the value from the "≠" function is
"White", the loop should be
aborted.

As specified in the task, the model should move along the black line. If it encounters
a color field, the color value must be determined in order to start an event
depending on the color. To do this, you must create the "Color_recognice" function.

You have already created the
required variables so that you can
program the adjacent function.
The current color value is
determined using the
mathematical functions and
transferred to the "Color" variable.

The value for "Color" is then
evaluated in the program start and
corresponding events are started.

Start with the evaluation of "Green".
If the color area was detected, the variable "Color" contains "Green". Now check
whether the variable "speed" is "<" (less than) "275". If this
is the case, you must set "speed" to the value "speed - 75".
The movement of the model is now carried out with this
updated value.

You write the program parts
in an "if do otherwise"
condition. As you can see, you
still need the function
"follow_line_or_time with"-
"time". Create the function and insert it at the
appropriate place in the start program.

In the start program, change the value for "time" to "1".

Add three more evaluations to the start program.
Change "otherwise if" to "Yellow = color", "Blue = color"
and "Red = color". To do this, simply duplicate the
required commands and insert them accordingly. You
can duplicate the second evaluation from the first.
Here you only need to increase the speed, add "75" to
"speed" and then assign the value "speed".

Almost done: Two evaluations still need to be defined. To
do this, create a function with the name "Stop_and_go"
for the color "Blue" and a function with the name
"Dance" for the color "Red". Create the functions based
on the program specification.

Insert the two functions into the program start
accordingly, followed by the function
"follow_line_for_time ...".

In "Stop_and_go", the model moves to the
right, stops and then to the left and then
moves along the black line.

In "Dance", the model turns in different
directions. The movements resemble a dance.

You still need to create a small function. This confirms the color within the color
determination. (Which function/screenshot)

This creates the essential functions and you can save the program again.
"Omniwheels_track_ gesture_sensor_4.rpp"

Test the loaded program

Finally, the entire program of the program start.

Congratulations on making it this far. The issue of color detection is really
quite complicated, and here we were just looking for a possible solution. The
idea of automatically calibrating the sensor at the beginning helps us to
recognize the colors better, but it's not perfect. For example, did you know
that a few years ago TV cameras, before shooting outside the studio, would
hold a white sheet in front of the camera to do the white balance? That was
basically so the camera knew the color of the light and a white t-shirt on TV
would look white and not yellow. Even today, companies invest a lot of time
in developing software so that, for example, when your cell phone takes a
photo, it automatically recognizes the color white and can therefore display
this color and all others correctly.

Why am I telling you this? Because the color recognition may not have
worked properly despite the calibration. But that doesn't matter, you just
have to slightly adjust the limits of the color recognition function, i.e. how
much red, green or blue, for example, yellow has. You will have to play with
these values yourself until you achieve better results. You can also try out
how it works better or worse under different light colors, the light in the
room or under the sun or on a cloudy day.

And finally, remember that this is a fischertechnik construction set. What
does that mean? It means that you have learned the basics of
programming here, but from here many possibilities open up to you.
Design your own robot, program it, play with it, but don't just stick to the
models we've seen. Enjoy creating the robot, combine it with other
fischertechnik components you have and create new, more complex, more
fun robots. Enjoy experimenting and making mistakes to find the best
solution to make the robot do what you want it to do!

The entire fischertechnik team wishes you lots of fun with everything you
will discover and with all the wonderful robots you will build with them!

