

Omniwheels basic model

With this model, you will learn more
about the basics of programming
and the use of four omniwheels and
how they work.

Actuators and technical accessories installed in the model:

Mini motor Gearbox Omniwheel wheel

You can find an explanation of the components on the start page.

The "Omniwheels basic model" is divided into 3 programming tasks:

Task 1

Omniwheels_Base_M
odel_1.ft

Programming level 1
The model moves straight out for 1 second, crosswise to
the left for 1.4 seconds, back for 1 second, crosswise to the
right for 1.4 seconds, turns to the left for 3 seconds and
then to the right for another 3 seconds. It then stops.

Task 2

Omniwheels_Base_M
odel_2.ft

Programming level 3
The model should run in all possible directions. For this
purpose, the directions of travel are to be written in
functions for later programming tasks.

Task 3

Omniwheels_Base_M
odel_3.ft

Programming level 3
The model should travel in all possible
directions. The model is controlled via a
self-generated control panel.

Task 1

As only 2 wheels were used in the previous models, you unfortunately cannot access
the subroutines that have already been created - you simply have to create new ones.

The task description or solution explains how the 4 Omniwheel wheels must rotate
in order to perform the desired movements of the model. The red arrows stand for
motor rotation "left". The green arrows stand for motor rotation "right".

Direction of travel - forwards

Subprogram - move_fw Wheel rotation

With "speed", you are accessing a variable that controls the motor speed. Otherwise,
you should have no problems understanding the function.

Direction of travel - backwards

Subprogram - move_bw Wheel rotation

Direction of travel - sideways right

Subprogram - move_right Wheel rotation

Direction of travel - sideways left

Subprogram - move_left Wheel rotation

Direction of travel - diagonally forwards to the right

Subprogram - diagFR Wheel rotation

Direction of travel - diagonally forward left

Subprogram - diagFL Wheel rotation

Direction of travel - diagonally backwards to the right

Subprogram - diagBR Wheel rotation

Direction of travel - diagonally backwards left

Subprogram - diagBL Wheel rotation

Direction of travel - turn right

Subprogram - curve_right_fw Wheel rotation

Direction of travel - turn left

Subprogram - curve_left_fw Wheel rotation

Direction of travel - turn right

Subprogram - turn_right Wheel rotation

Direction of travel - turn left

Subroutine - turn_left Wheel rotation

Rotation around the center of an axis

Subprogram - turn_right_cent Wheel rotation

If you want to stop all motors, you only need to enter the command
"stop motor" four times in the "stop" function and change the
connection parameters.

Now to the spending solutions.

Start with the controller configuration. For the first task, you only need
the 4 drive motors that are connected to M1 to M4.

Then switch to the "main program".

As the program does not work in an endless loop, you can delete it.

Next, create the variable "speed" via "Processing" - "Variables" - Create
variable".

Start with the required functions for the main program. These are:

"move_fw", "move_left", "move_bw", "move_right", "turn_left", "turn_right" and "stop".

You can transfer the individual function structures from the templates.

Which functions do you need to add to the main program based
on the task? First, there is the command or function "move_fw".
You need the value "300" as the speed and the command "wait s"
with the value "1" for 1 second.

The model then moves "1.4" seconds to the left at a speed of "300".

After moving to the left, the model should move back "1" second - also
at the speed of "300".

With the next block, the model travels a distance of "1.4" seconds to the
right.

The last two blocks should each turn the model "3" seconds to the "left"
and then to the "right".

The model should then stop.

The program is then terminated.

Test the program and save it on your computer under the name
Omniwheels_Base_Model_1.

Task 2

Now you come to the second task. Here you create a program similar to the first
direction of travel functions. These are:

"diagFL", "diagFR", "diagBL", "diagBR".

First create the "diagFL" function. Here, the model should move diagonally forwards
and to the left. The speed is also defined in this task by the variable "speed".

The program structure can be found in the basics at
the beginning of the document.

Then create the three additional function blocks for
cross travel. To do this, duplicate the function 3 times and change its name. In the
second step, you must change the information on the motors. You can see the
changes in the following illustrations.

All functions are now created and you can start with the main
program.

The adjacent program structure is only an example. You can of
course also control your model differently. For example, change the
speed at which the model moves.

Simply try out different options.

Save it on your computer under the name
Omniwheels_Base_Model_2 .

Task 3

In this task, you will create a control panel with which you can control the model
from the computer.

As you need to access the driving commands in task 2, save task 2 under
Omniwheels_Base_Model_3 on your computer.

You need the following functions for the new
program:

"move_fw", "move_bw", "move_left", "move_right", "turn_right", "turn_left", "stop",
"diagFL", "diagFR", "diagBL", "diagBR".

Delete all commands from the program start.

Before you start with the main program and its functions, here is an explanation of
how to create a control panel.

First you have to click on " " in the project window. A context
window opens from which you select "Control panel" and confirm
with "CREATE".

A control panel configuration window
opens in which you can set up the control
panel with various control elements.

In addition to the commands and
elements, the window also has an X/Y
division. The overall screen has a division of
640x360 px.

Now to the individual elements:

Button or "remote_button", an event is triggered when clicked

Slider or "remote_slider", values can be set here

Text output or "remote_label", e.g. an info text can be displayed here

Virtual lamp or "remote_status_indicator, opt. display switch on/off

Image display or "remote_image", an image can be displayed here

Control with a virtual joystick or "remote_joystick"

Diagram or "remote_chart", display of values in a diagram

The individual command icons are dragged into the screen from the menu, as are
the program commands.

First drag the "remote_button" for a heading onto the screen.

Important: Use the entries in the inspector for placement. Here you
define the size, the position, an ID and the appearance of the button
content.

First define the text to be output "Control program".
Overwrite the font size of "40" and the font style "B" for
bold.

Change the ID from "remote_label" to "Heading".
Then set the position - "X" to "210" and "y" to "20".
Finally, change the "size" of the display to "width 215"
and "height 40".

The setting is displayed on the control panel configuration screen.

If the program were transferred to the controller, the following
display is shown.

I will explain other elements that you will need in the course of creating the program.

Important: Place all directions of movement that you want to control with the
control panel in the control panel configuration.

Coordinates, appearance and contents:

RC button

Text Name x y Width Heigh
t

Font size Alignmen
t.

turn left bt_turn_left 60 20 100 40 22
turn right bt_turn_right 220 20 100 40 22

forward left bt_fw_left 20 80 100 40 22
forward bt_fw 150 80 100 40 22

forward right bt_fw_right 280 80 100 40 22
left bt_left 20 140 100 40 22

right bt_right 280 140 100 40 22
backward left bt_bw_left 20 200 100 40 22

backward bt_bw 150 200 100 40 22
backward right bt_bw_right 280 200 100 40 22

RC Label

0 remote_label 400 20 40 35 22

RC Slider

Test Name x y Width Heigh
t

Alignmen
t.

From-To

 Slider_speed 280 200 40 160 Vertical 0,0,512

The generated control panel should have the
following appearance.

Delete the heading "Tax program" here.

When you start the program, the control panel is
displayed as follows.

Now that's done and you can define the main program or the program
start.

First set the variable "speed" to "0". Then insert the
command "set label field ... text" from the
"Communication" - "Remote control" block.

Insert the variable "speed" for "Text".

This completes the definition of the program start.

Next, build a query of the slider into the program. The set value should be
displayed in the "remote_label" and serves as a variable for the "speed".

To do this, you need the command "if slider ... moves: event" from
the "Communication" - "Remote control"
block.

Drag the command "set ... to" into the free space and
supplement the command with "Event ..." from the

"Communication" - "Remote control"
block.

The label field "remote_label ... Text" is then set
to the value of "speed". To do this, add the
command "set label field ... text" and extend it

with the variable "speed".

Important: The set variable value "speed" is processed with the same value in all parts
of the program.

Create a query for the "bt_fw" and "bt_bw" buttons.

For the sake of clarity, I have chosen to present the two definitions side by side. I will
briefly explain the first two.

From the "Communication" - "Remote control" block, drag the command "if button ...
clicked" twice. Change it to "bt_fw" and "bt_bw".

Insert the command "if do otherwise" into the free area. Complete the query with
the "Event ..." command from the "Communication" - "Remote control" block.

Replace "mache" with the function "move_fw" and "move_bw". Replace "else" with
the function "stop".

Now add the missing functions or evaluations of the buttons. To do this, simply
duplicate "bt_fw" and "bt_bw" and change the entries according to the screen
displays.

Once you have created all the functions and queries, you can test the program. In
the control panel that appears, you can control the model by clicking on the
individual buttons.

Finally, here are all the functions you need for the 3rd task.

Once everything has worked, save the program again on your computer under the
name Omniwheels_Base_Model_3. You can then start with the last model.

