Omniwheels with lane and gesture sensor

With this model, you will learn the basics of
programming. The use of the gesture sensor
(color recognition) and the interaction with
the track sensor is reinforced here. A new addition is controlling the model using a
control panel you have created yourself.

Actuators and technical accessories installed in the model.

Mini motor Gearbox GCesture sensor Omniwheel IR track sensor

wheel

You can find an explanation of the components on the start page.

The "Omniwheels with track and gesture sensor" model is divided into 5
programming tasks:

Task 1 Programming level 3 Hyperlink to
The model travels along the black line on the
Omniwheels_track_ the parkour. When it leaves the line, the IR Task

gesture_sensor_l1.ft track sensor adjusts the direction of travel
so that the model always follows the black
guide line.
Task 2 Programming level 3 Hyperlink to

The model should first search for the black task 2
Omniwheels_track_ge guide line and then follow it as in task 1.
sture_sensor_2.ft

fischertechnik ==

Task 3 Programming level 3 Hyperlink to

The model is to be moved using gesture task 3
Omniwheels_track_ge |control. To do this, the hand movements
sture_sensor_3.ft must be evaluated.
Task 4 As in the previous tasks, the model follows |Hyperlink to

the black guideline. If it hits a color field,
Omniwheels_track_ge the color is determined and an action is
sture_sensor_4.ft executed, e.g. blue - park

Task1

You already know the first task from the "Advanced 2-wheeled robot" model. The
only difference is that you are now working with four motors.

Determining the wheels: M1 = front left wheel, M2 = front right wheel, M3 = rear left
wheel and M4 = rear right wheel.

Start the program "Advanced_2_wheeled_robot_2".

As you can take over most of the functions, you must first save or name the
program under the new name: Omniwheels_track_ gesture_sensor_]

Extend the controller configuration to 4 motors and add the gesture
sensor to the 12C interface.

In the main program, you must then expand all functions relating to motor
movements with 2 additional motors.

Change the functions using the following illustrations:

2-wheel move_fw 4-wheel move_fw

+ definiere mit: + definiere mit:
= variable: BT = variable: [FTXT]

@ setze Motor (T8 Geschwindigkeit & setze Motor [T ITTZEM Geschwindigkeit

¥ setze Motor [[LEVEN (I8 Geschwindigkeit

setze Motor 288 Geschwindigkeit
“ setze Motor [T Geschwindigkeit
& setze Motor Geschwindigkeit

fischertechnik ==

2-wheel move_bw 4-wheel move_bw

+ definiere mit: + definiere mit:

= variable: [TIXX]) ~ variable: 5331
setze Motor [ZETTIE [T558M Geschwindigkei peed -

setze Motor [ZAIIE =58 Geschwindigkeit
setze Motor TPl [ZZ17 Geschwindigkeit
setze Motor [[ZEERN Geschwindigkeit
setze Motor [SA/EN [T°88 Geschwindigkeit

¥ setze Motor [TEV/EN TRl Geschwindigkeit

2-wheel turn_right 4-wheel turn_right

Ea TN turn_right |
setze Motor [YEVTIE [TT7EM Geschwindigkeit ® L[]}
setze Motor Geschwindigkeit L0}

ST TS turn_right |
setze Motor [TEVEIE [FT788 Geschwindigkeit */Kl[}
setze Motor YAV Geschwindigkeit ®E[)
setze Motor [ZAEEE ITTZEM Geschwindigkeit */ELLY

setze Motor [T/l [EX7RM Geschwindigkeit ® &[]

2-wheel turn_left 4-wheel turn_left

L ETENY turn_left |
&1 setze Motor [N Geschwindigkeit KL}
1 setze Motor [[ZE8 Geschwindigkeit /K11

+ definiere {ITINE
& setze Motor [T [T°8M Geschwindigkeit ®/E[1)
setze Motor [[T78 Geschwindigkeit * L)
setze Motor [ZEYERN Geschwindigkeit m
¥ setze Motor [ZA7EN Geschwindigkeit */EL[)

2-wheel stop 4-wheel stop

The model should drive along the black
line on the parkour. The IR track sensor is
used to readjust the direction of travel
when leaving the line so that the model
always follows the black guide line. You
can use the "follow_line" function here.
You do not need to make any changes.

ist IR-Spursensor [XHTAN sws E5H © 0] 55N ist IR-Spursensor [XATEM Staws E50 11

st IR-Spursensor [THTAN Staws S © [} (ETRM st IR-Spursensor [TEIIEN Status B © Y

ist IR-Spursensor [TULAN Staws EXN © [} C7E0 ist IR-Spursensor [T Statws EXN (1
st IR-Spursensor [TATAM Status 0 < [(7N st IR-Spursensor [T AT Status B © 13

You can delete the function "find_line", this is only needed in task 2.

A In the program start, you must

wiederhole ECTENETEN ist IR-Spursensor [[TUTZN "= L 0 | oder - | ist IR-Spursensor [TACEN = o] . . .
— T e = first duplicate the entire "repeat"

mache turn_right N
e ———————re—————— (OO from the "follow_line" block
e et Spursensor CTATEN statue EXH K and insert it into "program start".

B Change the "speed" value to "300".

warte bis ist IR-Spursensor [TAEAN Status 8 [EZ5Em ist IR-Spursensor [TACEN Status X8 * |

+ falls ist IR-Spursensor U728 Status 5 |0} TR0 ist IR-Spursensor [TALI Status EX * /1)
mache move_fw mit:
speed

Finally, you must insert the "stop"
block after the loop. This completes the
definition of task 1.

[C——
wiederhole EXITITIEN st R-Spursensor [T Status OBl *[C) 2588 st 1R-Spursensor [T Status £330+

mache + falls st IR-Spursensor [TATEN Swws CX8 - KN
mache tum right

warte bis st 1R-Spursensor CTUZZN Status £ +) 22 it 1R-Spursensor [TULI Status £330 <
+ falls st R-Spursensor [TUT I Status P - K1

st IR-Spursensor [THT M Sttus £3 * [C220 st R-Spursensor [TATT status £20 < 11
st IR-Spursensor [THTAN Status CX * [0 (E7EN st IR-Spursensor [ZHT R status £ 1)

Then test the program. If everything works, you can program the 2nd task.

Task 2

Important: As you will need parts of task 1, save them on your computer at
Omniwheels_track_ gesture_sensor_2.

First copy the "Advanced_2_wheeled_robot_2" program the function

ist IR-Spursensor [[TH AN Statwus B © §) 780 ist IR-Spursensor XU 5l Stawus 50 © EJ

This means that all functions are defined and you can integrate them into your
program start.

ist IR-Spursensor [T Stas X0 *[(J [EXEM st 1R-Spursensor [XATEN Staws 53> [0

As required in the task, the model
should first search for a line and
then move alongit, i.e.the function o Spursenso [T s X0 0 TR o sparsenser ST s £330 3
is placed before the loop ; e Dol ot N o 0
command.

st R-Spursensor [THTEN Starws EXH) (ECEN st 1R-Spursensor [TATEN starus XN *[)

The program is now complete and you can test it. Save it again.

Task 3

For this task, you will need the "move_right" and "move_left" functions in addition to
the functions already defined. Simply duplicate the "move_bw" function twice and
change the parameters.

4-wheel move_right 4-wheel move_left

+ definiere [TILA] mit:

+ definiere mit:
= variable: B0
setze Motor [VETIEN [[1T8M Geschwindigkeit [T Kl

= variable: BN
setze Motor LA TN Geschwindigkeit [T 0
setze Motor [TAU VRS [T77EM Geschwindigkeit [il
setze Motor [Fd [TCR#l Geschwindigkeit [Tl il

setze Motor (LA PRl [ZT8M Geschwindigkeit ETT ol
setze Motor [SALERM T30 RM Geschwindigkeit ET o bl
setze Motor [V 0 L0 (128 Geschwindigkeit [Tl rr b

setze Motor [T [ZXITRM Geschwindigkeit [T K

We create the main program together. As
you probably remmember, you have to insert
the loop "repeat permanently ..".

Before you start querying the values of the gesture sensor, you must create the
variable "gesture". The "speed" variable is already defined.

Gestensensor [ZUFREN ECETTEN [0 Insert the command sequence "set .. on"
(X izc_1 -] aktviere] Geste |
and "get gesture sensor ...".

mache setze [FTETRN auf hole Gestensensor [TAZREN (257Xl

Programmstart

[TLE P RX_12C_1 - | aktiviere - | Geste - |
dauerhaft wiederholen

t fals A total of 6 movements determined by [l TR e e
mache the gesture sensor should be evaluated
and trigger an action by the model. Todo
this, insert "6" times the command "if make".

sonst falls —

The first query should determine
whether the sensor value is "1". If
e thisis the case, the model should
mache setze [ES 0GRl auf A RX_12C_1 - WGeste- | Turn "700 ms" to the left. To do

+ falls (1] = - ®f gesture - | this, insert the command "=".The

mache tumn_left command "a number" is added
to the first docking point and the
variable "gesture" to the second docking point. This is followed by the command
"wait .." change this to "ms" and the value "700".

Programmstart

(L CLELNELTY RX_12C_1 - W aktiviere

fischertechnik ==

— Define the other queries. Duplicate the first

Gestensensor CTMPIREN ELIIEE guery and insert it in the respective places.
dauerhaft wiederholen

mache setze P cRal auf hole Gestensensor [TArNEN [T500 Then Change the pa rameters.
+ fll = Wgestre |

mache turn_left

sonst falls —

sonst falls =

sonst falls =

sonst falls -

sonst falls -

Finally,
you need to define the empty spaces of "mache".
To do this, you can duplicate the "wait" command
and insert it in the individual places. For the value
"2" insert "turn_right", for "3" "move_fw", for "4"
"move_bw", for "5" "move_right" and for "6"
"move_left". The "speed" parameters must be set
to "300". At the end of the loop, insert the "stop"
function.

The program is now complete and you can test it. Save the program under
Omniwheels_track_ gesture_sensor_3

Task 4
Now you come to the last task.

Important: In order for the gesture sensor to recognize the
coloured areas, you must reposition the gesture sensor as
shown in the assembly instructions.

The aim here is for the model to follow the guide line along the parkour again.

If a colored area is reached, an event should be executed.

e Ifthe sensor hits "yellow", the model moves faster.

e |If the sensor hits "red" the model performs dance
movements.

e Ifthe sensor detects "blue", the parking function is activated.

e [fthe sensor hits "green", the model slows down.

fischertechnik ==

For this program, you will create new functions and the main program except for a
few functions for moving the model. To do this, you can save the previous program
under the new name: Omniwheels_track_ gesture_sensor_4

Start by deleting all commands from the "Program start", except for the command
to initialize the gesture sensor.

e RXC12C1 - | aktiviere - Jf Licht - |

— A new command "output" is added here from the

erarbertung . . .

"Processing" - "Text" block. You can include a i il
text to be displayed in the console in the free | Freoemmstret

space S . . ivated
p ,eg : €Nnso aCtlvated' N relatlc ~ Sensor activate
Gestensensor [V #F] [aktiviere - J Licht - |

——,) to the program.
oty | Sensor activated |

In the course of the overall program, you will
incorporate further text editions.

Define the already created variable "speed"
W with the value "200". Then insert a "wait"
command of "2" seconds.

+ definiere [FETETY
bleec b b hole Gestensensor EXAFEREN (TSI X8 (3 100

ean CETT 0d - e Gemmeror (TN (50 INn the next step, create a "Calibrate"

gibaus

e N = i, CE00 T ETIM, 0 | function. Before you define the program

setze (ST auf * i der Liste

e EITER = * i, CI30 0 3, 1 S part, create the following variables:

"reference_ambient_light", "RGB", "Red",
"Creen", "Blue", "correct_r", "correct_b",
"current_g".

The first command Konsole
measures the reference |7
value of the ambient light provided by the sensor. To do this, first | sesoractivated
insert the variable "set reference_ambient_light". The variable is set -

to the output value of the gesture sensor for the "ambient light". You can display the
value in the console.

P reterence_ambient ight - F7]
LTl reterence_ambient light -

[EERCLEE B RXC12C_1 - i Umgebungslicht - |

Konsole

o — Then add the command
[ETT W reference_ambient_light - | ”Set RG B tO” a nd the Programm startet...
selze auf hole Gestensensor [N BN

_gibaus G command "get gesture
19,17,20
sensor .. RGB"in the free | Seiorcaibraec
space. You can then display the values determined for the three
colors in the console.

The next 3 commands are assignments from the command "in the list ...

take" from the "Processing" - "Data structure" block. The first element
in the list (RGB) is the value for "Red". This is assigned to the variable

Sensor activated

|IRed|l.

T Thinm- Raas & o] The second element in the list is the value for "Green". This

is assigned to the variable "Green". The third element in the
list is the value for "Blue". This is assigned to the variable "Blue".

L= T Calibrate |
L2 reference_ambient light - LT
[LET R reference_ambient light -
setze [T auf
gib aus
setze CXXRM auf *"jn derListe . [TTXM [N (728 1 . Element
setze [STINM auf * inderListe CITEN CIITES [IYEM E3 |. Element

setze CITRM auf *jn dertiste . 15NN CTNN [ITEM E . Element

First insert the command "set .. to" three hole Gestensensor XAFINIEN [T T TN
times, change to "Red", "Green" and "Blue".
Then insert the variable "RGB". Finally, the
command "A number" follows three more
times. Change the first value to "1", the

second value to "2" and the third value to "3".

hole Gestensensor [THFINIEN CI:EN

+ definiore (Y
setze (TSR g 120 [UmgebungsiichtJf < Jas 3

wece MM o = e Gestmoeecr [AZEKEN CE Then add the three color values to the

gibaus

N T e R variable "total_color". You can display
L] Green - ELEREFRITRNEIRGE - § nimm - M das - 2 -0 . .
o [T o T B L the calculated value in the console via

el o "output ..".

In the next step, set the variables "Red", "Green" and "Blue" to the value of the gesture
sensor for the colors "RGB red", "RGB green" and "RGB blue". Multiply this value by
"100" and divide it by the value "reference_ambient _light".

For a perfect white color, the three values should be equal, i.e. the total light value,
1/3 (or 33.3%) of each color.

Once you have calculated the percentage
of each channel, divide the theoretical
33.33% of each channel by the average
light value to obtain a correction factor for
the light in the room. The calculations are :
assigned to the variables ‘"correct_r" [:ﬁﬁlmgmfgmmmmmm

"correct_g" and "correct_b". == T [o i G T

hole Gestensensor [TAFTEEN [TFEOMreroTe £28 £5 100}

If the light is predominantly blue, the proportion of this channel is higher than 33.3
and the correction value is less than one. In contrast, the other channels are lower
than 333 and their correction values are higher than one. What needs to be
considered?

The model always starts in a white area. The correction factor significantly reduces
the effects of the light color and the sensor readings on the colors.

fischertechnik ==

Add the "Calibrate" function to the program start. You
can display the text "Sensor calibrated" in the console.

Define two further variables "last color" and "last
correction". Insert both variables after "Calibrate" and set

Calibrate
PR Sensor calibrated

et t=stcolor PRI wiice T them to "White" and "right".

S Iast_correction - MY rioht 3

Next, the model should find the black
line via the IR sensor. To do this, first
insert the "if do" command. For "if", Ml .

insert the multiple command to Z%Mm

determine the IR logic. Then, in the |
console, state that the line is being

searched for.

Ok, that's done too. Now you need the "find_line" function as the next program step.
To practise programming, simply create the function using the illustration.

+ definiere [T

Insert the "find_line" function into
the program start. When you start [
the program, the model searches for | e L

the b|aCk ||ne The fUﬂCtIOﬂ |S o ist IR-Spursensor [47 Status E28 © £ CXC2N ist IR-Spursensor (LR Status EX3
displayed in the console.

This defines the header of the program start
and you can add a loop as a further step.
Create the variables ‘"color", "time",
"red_sensor", "green_sensor", "blue_sensor"
and "ambient_light" as well as the function
"follow_line_with_color_trigger".

it IR-Spursensor (AN Status 28« K1

Important: The other program displays of the program start refer to the loop content.

The "Follow_line_with_color_trigger" function is inserted
T T follow._line_with_color_trigg
oo ST e e into the loop first. This consists of the adjacent program

dauerhaft wiederholen

| s lines. But beware: In this function you still need the
gl LSS 'Follow_line" function. You must therefore create both

mache LT

= functions.

fischertechnik =

LT Follow_line |
+ falis ist IR-Spursensor XA Status E58 - & [C7ER ist IR-Spursensor VU Status E58 © [
. M . L R last_correction - BTSSR right £

In the "if do" query, you still need
to query a value assignment from
the "Color_recognise" function. If
the value from the "#" function is : istIR.Spursensor [470 Sstus £ (0 (M istR.Spursensor (2415 Status £58 [0
"White", the loop should be istR.Spursensor [UVEN satus EX) (RN it Spursensor G0N staus 20 {01

aborted.

istIR-Spursensor VA7 Status EX8 © [220 istIR-Spursensor [TUEN Status EX8 © [

istIR-Spursensor [E7/ Status EX3 () [TER istIR-Spursensor [[TU[:EN Status £ © K

istIR-Spursensor [TAZEN Status EX <) [CTEM istiR-Spursensor (AN Status X ~ K

As specified in the task, the model should move along the black line. If it encounters
a color field, the color value must be determined in order to start an event
depending on the color. To do this, you must create the "Color_recognice" function.

You have already created the
TR = o oo & required variables so that you can

setze [T aur hole Gest

e - T L program the adjacent function.
oo FETETETRN . g oo [T 0, 2 [eement| (28) XN EXTYINTIE The current color value is
indar ista!” RN (00 R, 1 |1 Slment) X8 {0 ES ECTCNCIEN determined USing the

LLol] red_sensor LB req_sensor - Jf x - [correct.r - | . .

e e— mathematical functions and
il oiue-censor _ LRI biue sensor H
e i T transferred to the "Color" variable.
i [bive_sensor) - #fas] und S8 biue_sensor| - green_sensor |

mache _sem[-z:m:.u ET Bive B

setze CTTIETIENTRN aut

+ falls

mache setze [TYTHM aur ¢

The value for "Color" is then
racn| eoe G o D evaluated in the program start and
Wt A8 red sensor - 840 1
L i corresponding events are started.
il (TR S Color - |

+ falls

Start with the evaluation of "Green".
If the color area was detected, the variable "Color" contains "Green". Now check
whether the variable "speed" is "<" (less than) "275". If this [PEE

H " " " 1] WAChE| (¥ 275} < - 8 speed |
is the case, you must set "speed" to the value "speed - 75" e e—

The movement of the model is now carried out with this ROIE sioving speca.
u pd ated Va|Ue. Tl e Vo i T“h:

+ definiere . i— &g
PSRN Confirming color 1) You write the program pa rts .

TR - Following line with time

follow_line_for_time mit: in an "if do otherwise" setze (IICEM aut - Zeitstempel XN
dauerhaft wiederholen

time L¥ condition. ASyou can see, you [EESEuss

Color_recognise . . + falis Zeitstempe! S 5. (TSR
s T ”st||| nged the func.t|o”r1 o
e oo o < follow_line_or_time with"-
setze LR st "time". Create the function and insert it at the

follow_line_for_time mit:

appropriate place in the start program.
Bons'lfaE- (3 Biue KA - - ®f Color - |

mache Stop_and_go
follow_line_for_time mit:
time [l)
T B e In the start program, change the value for "time" to "1".
mache Dance
follow_line_for_time mit:
time.

Add three more evaluations to the start program. s aioreen B - B coor]
Change "otherwise if' to "Yellow = color", "Blue = color' s mmmm -
and "Red = color". To do this, simply duplicate the giaus ¢ o
required commands and insert them accordingly. You follow_ine_for_time. mit:

can duplicate the second evaluation from the first.
Here you only need to increase the speed, add "75" to

"speed" and then assign the value "speed".
sonst falls — (4 Red 2B - - @ Color - |

+ falls [Green B - — #[Color—|
mache |+ flls - pr7]) PR ETE
mache setze ETT 1Rl auf (speed - W -- M 75)

LETRE - slowing speed.

AR e Almost done: Two evaluations still need to be defined. To
sonetfal = << {7 » | (X do this, create a function with the name "Stop_and_go"
B L for the color "Blue" and a function with the name
"Dance" for the color "Red". Create the functions based
on the program specification.

sonstalls = « 71 » |EEN. (TR

GCL L C) Stop_and_go |
(LET - Stop and go

P specd - LA 250)

+ definiere
TR TR Letsdance | -

follow_line_for_time mit:

ol oW Tine o e e Insert the two functions into the program start
= accordingly, followed by the function Nt
. . turn_right
warte X8 * (0050 "follow_line_for_time ..".

move_right mit: turn_left

warte EE * E)

move_right mit:
In "Stop_and_go", the model moves to the
right, stops and then to the left and then
moves along the black line.

follow_line_for_time mit:
time [
setze [RTTTRN auf

In "Dance", the model turns in different ~—
. . na_line
directions. The movements resemble a dance. B=

You still need to create a small function. This confirms the color within the color
determination. (Which function/screenshot)

This creates the essential functions and you can save the program again.
"Omniwheels_track_ gesture_sensor_4.rpp"

Test the loaded program

Finally, the entire program of the program start.

ist IR-Spursensor [T Stats 5N © 18

mache follow_line_with_color_trigger
v R (Green 8 - M Color |
mache + falis 2758 < M speed - |
mache setze o=l auf [speed - B-- B 75)

PR clowing speed. |

follow_kine_for_time mit:

et S Veliow B - - B Color - |
L Increasing speed. |
bt cpeed Lol speed - Jf+ [75
follow_Ene_for_time mit:

fischertechnik:

Congratulations on making it this far. The issue of color detection is really
guite complicated, and here we were just looking for a possible solution. The
idea of automatically calibrating the sensor at the beginning helps us to
recognize the colors better, but it's not perfect. For example, did you know
that a few vears ago TV cameras, before shooting outside the studio, would
hold a white sheet in front of the camera to do the white balance? That was
pasically so the camera knew the color of the light and a white t-shirt on TV
would look white and not vellow. Even today, companies invest a lot of time
in developing software so that, for example, when your cell phone takes a
photo, it automatically recognizes the color white and can therefore display
this color and all others correctly.

Why am | telling you this? Because the color recognition may not have
worked properly despite the calibration. But that doesn't matter, you just
have to slightly adjust the limits of the color recognition function, i.e. how
much red, green or blue, for example, vellow has. You will have to play with
these values yourself until you achieve better results. You can also try out
how it works better or worse under different light colors, the light in the
room or under the sun or on a cloudy day.

And finally, remember that this is a fischertechnik construction set. What
does that mean? It means that you have learned the basics of
programming here, but from here many possibilities open up to you.
Design your own robot, program it, play with it, but don't just stick to the
models we've seen. Enjoy creating the robot, combine it with other
fischertechnik components you have and create new, more complex, more
fun robots. Enjoy experimenting and making mistakes to find the best
solution to make the robot do what you want it to do!

The entire fischertechnik team wishes vou lots of fun with everything you
will discover and with all the wonderful robots you will build with them!

fischertechnik ==

