

Forklift truck

With this model, you will learn the basics of programming. You already know most
of the fischertechnik components used from the previous tasks.

Actuators, sensors and technical accessories installed in the model.

Mini motor Gearbox Button Omniwheel
wheel

IR track sensor

The explanation of the components can be found on the start page.

The "Forklift truck" model is divided into 2 programming tasks:

Task 1

 Forklift_1.rpp

Programming level 3
The forklift truck is positioned in front of the pallet.
When the program is started, the forklift picks up
the pallet, turns 180° and sets the pallet down
again.

Task 2

Forklift_2.rpp

Programming level 3
Pallet is positioned on "A". The forklift truck is
positioned on the line in the middle, in the
direction of "A". It then drives along the line until it
ends (at the end of the line it corrects briefly) and
then picks up a pallet at "A". It then turns around on
the line, travels along the line again until the track
ends at "B" and then sets the pallet down at "B".
Then the program is finished.

To solve the first task, you can access several subroutines from the programming
task "Advanced_2_wheeled_robot_2.ft".

Tip: Simply load the program and remove all program steps that are not required.
For example, all commands in the main program, the "follow_line" function and the
"find_line" function.

You need the subroutines "turn_left", "turn_right",
"forward", "backward" and "stop". What you also do not
need to redefine is the variable "speed".

Change the controller configuration
according to the assembly instructions.

For both tasks you will need 3 motors
(two for the wheels, one for the fork), an
LED for the flashing function, a mini
push-button as a limit switch for the fork
and the IR track sensor (task 2).

Task 1

Before you define the main program, you must
create 3 new functions.

Start with the "down" function. It is used to lower the fork until the limit switch "Motor
RX_M3" is pressed. As you have already created
functions, you will find the solution on the right-
hand side.

In the next step, you create the "up" function. To do this, simply duplicate the "down"
function and change the "wait until ..." block to "wait until ..." and the direction of
rotation from "left" to "right".

Finally, you need a function in which the LED should
flash. Give the function the name "blink". The LED
should light up "3" times in a "repeat" loop. The light
and dark phases are each "0.5" seconds. Create the
adjacent function.

Once all functions have been defined, you can start the main
program. First start with the functions for picking up the pallet. The
model stands with the fork in front of the pallet. When the program
is started, the LED flashes. The fork then moves to the end position
and waits there for "0.5" seconds.

The model moves forward for 1 second, stops and lifts the pallet. The
model then moves backwards for 2 seconds.

Important: Only the new commands or blocks in the document are
shown in the following illustrations.

The model then turns "3" seconds to the left "turn_left" then stops "0.5"
seconds and then moves forward "1" second and then stops.

In the next steps, the fork should be lowered until the limit switch is
reached. After a waiting time of "0.5" seconds, the model moves back
"1" second and then stops.

After a further waiting time of "0.5" seconds, the fork
moves upwards and the flashing function of the LED is switched on.

And the program is already defined. Test the program and save it on
your computer under the name Forklift_1.

Task 2

Use task 1 as the basic program. Do you remember the task
"Advanced_2_wheeled_robot"? There, the model should follow a black track. You will
also need this function in task 2.

ROBOPro Coding has a function for copying
program parts so that they can be inserted into
another program.

Proceed as follows: Open the file "Advanced_2_wheeled_robot_3". There you will find
the function "follow_line". This is required in your current task.

Click on the function with the "right mouse button". A context window
appears in which you select "Copy". The function is located in a memory
area of your computer (clipboard).

Open "Forklift_1". If you press the "right mouse button" in the empty
programming window area, a context window appears with the
selection "Paste here". Click on the entry and the function will be
integrated into your "Forklift_1" program from the clipboard.

Now we already have the "follow_line" function, but the previous exercise was
about following a black line, but in this case it ends. You might think that the
function would work as it is, and when the robot reaches the end of the line, it
would recognize that it is at the end, get out of the loop and do what we have
prepared for it.

But it won't be like that. Normally, the robot does not drive completely straight on
the line, this will hardly be noticeable, but this small difference will cause one of the
two sensors to become active first and begin to correct. As there is no longer a
black line, the robot will continue to drive in circles until it finds the line again. And
when will that be? You've probably already guessed it: when it has completed a full
lap and comes back to where it started. Funny, isn't it?

Let's change that, instead of waiting to find the line again, let's have it correct for
40ms or 0.04 seconds and then check again what the conditions are, that is, if it is
completely on the black line, if it needs to correct in the other direction or if there is
no line and therefore it needs to stop following the line. We simply replace the blocks
of waiting until both sensors are at 0 with a 100 ms wait.

Why didn't we do it this way from the beginning? Because this solution is not so
good for taking curves, as there is a fixed waiting time, he could correct too much
and then would have to correct again, but now this is not so important for us, but
the important thing is to realize that we have reached the end of the black line.

Rename the program to "Fortlift_2" and save the partial program on your computer
with the name Forklift_2.

Copy the function "find_line" from the program "Advanced_2 ...robot_2" to
"fork_lift_2" again.

Define a new function with the name "pick_up". If this is called in the
main program, the pallet is to be picked up at point A. After a waiting
time of "0.5" seconds, the model moves forward for "1" second, stops
and lifts the fork via "up".

 Define another function with the name "pick_down". If
this is called in the main program, the pallet should be placed at point
B. Here too, the fork moves downwards via "down". The model then
moves backwards for "1" second with "backward" and stops. After a
short waiting time of "0.5" seconds, the fork is raised with "up". This is
followed by another short waiting time of "0.5" seconds.

Now all the functions required for this task have been created and you
can start with the main program. First delete all commands in the
"Program start" area.

Important: In this task, the program is only run once. This means that the familiar
"repeat continuously" loop command is no longer required.

After starting the program, the LED should flash first. The model
should then find the black line or follow the line. At the end
point A of the line, the model stops using the stop command in
the "follow_line" function. The pallet is picked up with the
"pick_up" function.

As the IR sensors are now outside the black line, it must be
searched for again. The model then moves along the black
line to the end point B. It stops there with the stop
command of "follow_line". The following function
"forward ..." and "wait s ... 1" ensures that the pallet is
positioned above the storage location "B". The model stops
with the "stop" function.

The last two functions that you integrate into your main
program is to place the pallet at location B. The blinking
function is then called again.

Now test the finished program. If everything works, you can
save it again on your computer.

If you look at the last program screen, you will notice that the functions
and commands have a "blue ?". This means that a "comment" has been
added.

Just give it a try. Click with the "right mouse button" on the "blink"
function, for example. A context window appears with the selection
"Add comment".

Activate the entry - the context window is hidden. Click with the "left
mouse button" on the "?"

.

A "yellow input window" appears. Click in the window to display the
"input cursor". You can now use the keyboard to enter a meaningful
text for this function.

If you move the mouse over the frame, a cursor hand is
displayed instead of the cursor. The frame can now be
moved to any position on the programming screen by
"clicking the left mouse button".

If you want to hide the comment again, click on the "blue ?" with the
left mouse button. Only the "blue ?" will then be displayed.

If you want to delete the comment completely, click on
the "?" with the "right mouse button". A context window
will appear again - this time with the selection "Remove
comment". Click on the selection and the "blue ?" will be
deleted.

Ok, beide Aufgaben sind gelöst. Bevor du das Modell demontierst, kannst du dir
weitere Fahrmöglichkeiten überlegen und ausprobieren.

In this exercise we discovered something very interesting, namely how two
seemingly identical tasks could not be solved in the same way. And now, why don't
you try to change the waiting times? Because 40 ms is nothing for us, but it's a lot
for a robot. What if you try 100 ms? Or 10 ms? And what if you combine this change
with different speeds? You can certainly improve the accuracy of the robot when it
follows the line with these parameters.

Another solution to the same problem would have been, after we need to start a
correction, instead of immediately turning the robot, wait a few milliseconds and

then check again how the two sensors stand. If both detect white, the line is
probably over... or maybe we lost the line and our robot is now looking for your
math book instead of the pallet...

In programming and robotics, there are always different ways to find solutions to
our problems... And many of them are good. Don't hesitate to experiment.

Tip: Always save further programs for this model with a new name.

