

Advanced 2-wheeled robot

With this model you will learn the basics of programming. You already know the
fischertechnik components from the previous tasks. The IR track sensor is a new
addition.

Actuators, sensors and technical accessories installed in the model:

Mini motor Gearbox Gesture sensor Omniwheel
wheel

IR track sensor

You can find an explanation of the components on the start page.

The "Advanced 2-wheeled robot" model is divided into 4 programming tasks:

Task 1

Advanced_2-wheeled_robot_1.ft

Programming level 3
The driving robot drives straight ahead. If it encounters
an obstacle, it should avoid it.

Task 2

Advanced_2-wheeled_robot_2.ft

Programming level 3
The driving robot should drive
along a black line, the specified
course.
If it leaves the black line, it stops.

Task 3

Advanced_2-wheeled_robot_3.ft

Programming level 3
The program should control the movement on the
black line so that the model finds the black line again
if the robot leaves the black line.

Task 4

Advanced_2-wheeled_robot_4.ft

Programming level 3
The driving robot travels along a route; if it detects an
obstacle, it reduces its speed. A random generator is
used to determine the direction of rotation to avoid
the obstacle.

You have done the preliminary work - start RoboPro Coding, start new project,
possibly set the options for "new" and "empty" for a new program.

As already known, the next step is to configure the controller. To do this, switch on
"Controller configuration" in the project window. Set the RX
controller as the default controller. Then add the corresponding
"actuators" and "sensors". You can find these in the assembly
instructions.

The IR track finder is a new addition. You can find it under the
"Input" - "IR track finder" block.

Important: The sensors are connected to inputs "I7" and "I8".

Now to the first task.

Task 1

Insert the command to integrate the
"gesture sensor" into your program between
"Start program" and "Repeat permanently".

The button must be set to "activate" and "distance" as the distance to an obstacle is
to be measured.

To make your program clear, use "functions" for recurring command sequences.

Example: The two motors must be stopped several times in
the program. These are not programmed each time, but
written in a "function". This can be called at any required point
in the program.

How do you proceed? You will find the
required command in the "Processing" -
"Functions" block. Drag the command into the
empty work screen. Click on "do something"
and change it to "stop" in the context window.

Insert the two commands to stop the motors in the free space.

This function is therefore fully defined.

And the next function "move_forward" follows. Drag the new
function block into the workspace. Change the name to "move_forward". If this
function is called later in the main program, the model moves forward.

Insert two motor commands here. The direction of rotation is "left", the speed is "512"
for the first time.

The speed should be defined via a "speed"
variable. To do this, click on the "+" in front of
"define". Click on the "x" and change to
"speed" in the context window.

Next, create the variable "speed". To do this, select "Create
variable ..." in the "Processing" - "Variables" block.

Enter "speed" in the context window that appears. The variable is displayed as a
command block in the "Variables window".

The value "256" for the motor speed is set later in the main program.

Important: If the variable "speed" is used in functions, the value of
"256" defined later in the main program is adopted.

Change the two speed values with the
"speed" variable. To do this, drag the
"speed" command from the "Processing"
- "Variables" block over the numerical
value of the motors.

You create the "move_back" function by
duplicating the "move_forward" function and
changing the direction of rotation to "right".

The two functions are now defined and you can program two functions for turning
to the "left" - "turn_left" and to the "right" - "turn_right".

But where is a value set for the "Speed" variable? To do this, open the "Processing"
block and then "Functions". In the command window, you will find the
command "move back with: speed" and a free docking point.

You need two more functions "turn_right" and "turn-left". Create these and insert
two motor commands into the empty spaces. In the "turn_left" function, change the
parameters of "RX_M1" to "left" and "200" and
for "RX_M2" to "right" and also to "200".

For the
"turn_right" function, the parameters must be
set to "left" and also to "200".

You have already activated the gesture sensor.

The command "if make" from the "Processing" -
"Logic" block follows.

Drag the command "is gesture
sensor ..." from the "Sensors" - "I2C" block to the

"if" query. Change to "distance", "≤" and
"240".

Add the "stop" function from the "Processing" -
"Functions" block - i.e.: all motors are stopped.

Then add the function for
moving forward. This can be
found under "Processing" -

"Functions". The command "a number" from the
"Processing" - "Math" block is inserted at the free
docking point and changed from "0" to "250".

The model now drives straight ahead until the event "the distance to
an obstacle is too short" occurs. This is determined in a "repeat until

done" and a distance query by
the gesture sensor. If the
distance is ">" - "200", the

model should stop after "1" second. You can
find the new "Repeat as long as" command
under "Processing" - "Loops". You can
duplicate the gesture command and then
change the parameters.

In the next step, the model should turn "1"
second to the "left" and then stop again. Add
the corresponding functions and the waiting
time.

The last command you need to insert into the loop is
to drive forwards at a speed of "250". After a pause of
"1.5" seconds, the model stops and turns "1" second to
the "right". Then the motors stop again. If the
condition is not met, i.e. the distance is still less than
"200", the loop is repeated.

Finally, you must tell the model that it should
drive straight ahead again at a speed of "256". You
insert this function after the "if do" query.

The program is now finished and you can save it
on your computer under the name Advanced_2-
wheeled_robot_1. Then test the program together
with the model.

So - and on to the 2nd task.

Task 2

For the second task, as you can see from the
task, you need the black line on the course
included in the construction kit as the driving
route.

You do not need to change anything in the controller
configuration, as all the sensors and actuators used have
already been defined.

You can use task 1 as a basis for programming. You will
also need the functions "forward", "backward", "stop",
"turn_left" and "turn_right" in task 2.

Delete all commands from the main
program except for the loop "repeat
permanently".

Important: Before you carry out any further programming, a technical note.

The two IR sensors react to white and black. The IR logic can be illustrated using a
small table.

IR1 sw 0 IR1 ws 1 IR1 ws 1 IR1 sw 0
IR2 sw 0 IR2 ws 1 IR2 sw 0 IR2 ws 1

You can use the interface test to display the switching functions. Open it and move
your model with the IR sensors over the black line and observe the outputs at I7 and
I8.

Create a new function with the name "follow_line".
Insert a "repeat as long as do" command. Then
check whether IR sensor I7 "or" IR sensor I8

transmit a "0" to the controller. To do this, first add the "and" command from
the "Processing" - "Logic" block. Change the query to "or".

Insert the command "is IR track sensor ..." from the "Sensors" - "Input" block into the
two free spaces. Change the parameters if necessary.

What happens when IR/I7 reports a 1? This means that IR/I7 has left the black line.
The model should turn to the "left" for a period of "0.05" seconds - "turn_left".

Insert an "if make" query next to
"make". Duplicate the
command block "is IR track
finder RX_I7 ..." next to the query "mache" and change the value to "1" if necessary.
The correction is carried out until the value of "RX_I7" is "0" again.

In the next step, you must query the
value of "RX_I8" in the same way. To
do this, duplicate the command
blocks from the first query and place
them under the "if do" block. Change
from "RX_I7" to "RX_I8". Swap the
"turn_left" function with the
"turn_right" function.

Finally, you need to add an "if
done" query to check whether
both IR sensors report the value
"0" again. If this is the case, the
model should move forward at a
speed of "250". Insert the "if do"
query. Duplicate the "as long as"
block and insert it next to "if".

Change "or" to "and" and the parameters "0" to "1". This is followed by the function
"forward with: speed" with the value "250".

All functions are now defined and you can complete the main program.
First add the "follow_line" function. According to the task, the motors
should stop when the line is left. To do this, add "stop" as the last function.

Test the program and save it on your computer under the name Advanced_2-
wheeled_robot_2.

Task 3

Now it's time for the 3rd task. This is similar to the previous task - except that a black
line is to be searched for first. Here, too, the main program with its
subroutines starts first. The subroutine "find_line" is a new addition.

This subroutine searches for the black line. If both IR sensors have
the value "0", the two motors stop and the subprogram is exited.
Otherwise, the model turns via the "turn_left" subprogram.

You need a function with the name "find_line". First insert the loop command
"repeat as long as make". Duplicate the IR sensor query from the function and insert
it after "as long as". Change the query from "0" to "1".

Add the "turn_left" function from the functions - rotation to the left.

Before you integrate the two functions "find_line" and "follow_line" into the main
program, you must integrate the "stop" function in the "follow_line" function after
the loop.

Test the program and save it on your
computer under the name
Advanced_2-wheeled-robot_3.

Task 4

But now to the 4th task. This is again about the possibility of following the black lane
and possibly avoiding an obstacle.

Use "Advanced_2-wheeled-robot_3" as a basic program in which you have to create
and integrate various changes and new functions.

Start with the main program. Delete all command
blocks except for the loop command. As this control
program also works with the gesture sensor, you
can initialize it before the loop.

Create a "variable" with the name "directions" - "Create directions" for the "variable"
and enter the variable name in the context window.

From "Processing" - Variables", add the
command "set directions

to" under the gesture sensor.

Fill the empty space of "directions" or define what the variable should be set to.

To do this, you need the command
"one letter ..." from the "Processing" -

"Text" block. Insert this and click on
the free space and enter "Left" in the context window.

No changes need to be made to the "turn_left", "turn_right", "backward", "forward"
and "stop" functions, so you can bind these into the program if required.

You have to make several changes in the "find_line" function. To do
this, click on the "+" in front of "define". The command is expanded
with "Variable". Change the "x" with "directions".

Drag the blocks from the loop to the
right-hand screen and insert the
command "if do otherwise" from
"Processing", "Logic". The query of the

two IR sensors remains unchanged.

For "if" you must enter a query "directions = Right". To do this, drag the
"=" command from the "Processing" - "Logic" block to the free
docking point.

Insert the variable "directions" in the first free position. In the second position, insert
a "text variable" with the name "Right". If the condition is met, the function

"turn_right" is called under
"do". If the condition is not

fulfilled, the function "turn_left" is
called under "else".

Before you complete the main program, you need to adjust the "follow_line"
function.

Delete the stuffing function. Extend the repeat loop
query with "... and gesture sensor ..." To do this, drag
the two IR sensor queries into the empty screen.
First you need an "or" command. Insert an "and" command in the second position.

You can reintegrate the outsourced IR sensor queries into the two "or" docking
points.

First insert the logic command "=" at the "and" position. Set the distance value to
"240". The first part of "follow_line" has now been changed or added.

In the 2nd part, you must use "if do" to determine whether the distance of the
gesture sensor is "≥ 240". If this is the case, the
model should move back at a speed of "240" and
wait "1" second. To do this, insert the command
block under the "repeat as long as make".

Now for something special. A random generator should specify the direction in
which the obstacle should be avoided. The block of commands required can be
found in the right-hand section of the program.

Number" from the "Processing" - "Logic" block is
inserted. The value is set to "1".

In the second query area, enter the command "integer random number ...". Here you
must set the default values to "1" and "2". You can find the command in the

"Processing" - "Math" block.

If the comparison "1" matches the random number, the
variable "directions" is set to "Right" under "make". The "turn_right" command is then
executed. You can duplicate the command sequence from the program start and
change the text to "Right". Duplicate the two "make" commands in the "else" area.
Change to "Left" and replace "turn_right" with "turn_left". Finally, add a wait time of
"0.5" seconds.

Now the main program must be added in the "make" area. Here you first add the
function "find_line with: ...". Insert "direction" as a variable. The last command is
"follow_line".

Simply place one or two obstacles on the
course and start the program. If everything
works, the robot will avoid them without
any problems.

Save the program on your computer under the name Advanced_2-
wheeled_robot_4.

Then dismantle the model and move on to the next task.

